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Abstract

Computer image generation has been driven by two major factors: realism and inter-
activity. Whereas the former led to various global illumination algorithms to solve
the problem of light interreflection as accurately as possible the latter motivated
algorithms for the fast generation of shadows for direct illumination environments.
Computing a global illumination solution is an inherently difficult task, since solu-
tions to integral equations – which express the transport of radiance in a recursive
manner – have to be computed and therefore requires expensive computation times
for sophisticated solutions.

Modern graphics hardware and their programmable shading units along with the
fact that GPUs (Graphics Processing Units) are scaling well beyond Moore’s Law,
prompted researches to adopt, or at least accelerate, some popular graphics algo-
rithms, like raytracing and radiosity, to the parallel architecture of GPUs.

The research – summarized in this thesis – was motivated by the above mentioned
factors. One part of this thesis is devoted to the description of an extended GPU
radiosity solver for triangular meshes, which is also capable of handling diffuse trans-
mission as well as multiple ideal specular reflections and transmissions. Adaptive
subdivision is used to increase the accuracy of the radiosity solution. For this pur-
pose a new technique, which uses hardware occlusion queries to determine shadow
boundaries in image space, is proposed. Furthermore the concept of light distribu-
tion textures to incorporate goniometric light sources into the radiosity process, is
introduced.

The adaptability of these textures to real-time environments and for the simulation
of effect lights is discussed – along with a shadow volume algorithm for the creation
of shadow profiles – in the second major part which deals with GPU algorithms for
shadows and light simulation in interactive environments.
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Kurzfassung

Realismus und Interaktivität waren und sind die zwei treibenden Faktoren für die
Entwicklung von Algorithmen zur Bilderzeugung. Ersterer führte zu unterschiedlichen
globalen Beleuchtungsalgorithmen um das Phänomen der Lichtausbreitung so akurat
wie möglich zu simulieren, während letzterer die Entwicklung von schnellen Algo-
rithmen zur Erzeugung von Schatten in interaktiven Umgebungen veranlasste. Das
Problem der globalen Beleuchtung erfordert die Lösung von Integralgleichungen –
die den Lichttransport in rekursiver Form ausdrücken – und ist folgedessen von sich
aus eine schwierige und zeitaufwändige Aufgabe.

Moderne Graphikhardware mit ihren programmierbaren Shadereinheiten und die
Tatsache, dass die Zunahme ihrer Rechenleistung die Prognosen von Moores Law
überschreitet, eröffnete Forschern die Möglichkeit, populäre Grafikalgorithmen wie
Raytracing und Radiosity, an GPUs (Graphics Processing Units) zu adoptieren bzw.
zu beschleunigen.

Die in dieser Arbeit zusammengefasste Forschungsarbeit wurde durch die oben genann-
ten Faktoren motiviert. Ein Teil dieser Arbeit beschreibt einen erweiterten GPU
Radiosity Algorithmus, welcher auch diffuse Transmission als auch mehrfache ideal
spiegelnde Reflexion und Transmission beherrscht. Um die Genauigkeit der Lösung
zu erhöhen, wird Adaptive Subdivision eingesetzt. Zu diesem Zweck wird eine neue
Technik, die Schattengrenzen mit Hilfe von Occlusion Queries im Bildbereich ermit-
telt, vorgestellt. Desweiteren wird das Konzept von Light Distribution Textures, zur
Simulation goniometrischer Lichtquellen, eingeführt.

Diese Texturen können auch in Echtzeitumgebungen und für die Simulation von
Effektlichtern eingesetzt werden. Dies wird, zusammen mit einem Schattenvolumen-
algorithmus für die Erzeugung von Schattenprofilen, im zweiten Teil dieser Arbeit –
welcher sich mit der Simulation von Schatten und Lichtquellen in Echtzeit beschäftigt
– diskutiert.
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Preface

This thesis summarizes the work which was carried out at the University of Applied
Arts Vienna, Department of Geometry between 2005 and 2008. It consists of five pa-
pers which were published either in international journals or conference proceedings.
Separate chapters are devoted to each of these papers:

Chapter 1 Günter Wallner, Geometry of Real Time Shadows, Scientific and Profes-
sional Journal of the Croatian Society for Geometry and Graphics, 10, Zagreb,
Croatia, 2006

Chapter 2 Günter Wallner, GPU Radiosity for Triangular Meshes with Support of
Normal Mapping and Arbitrary Light Distributions, Journal of WSCG, 16,
Plzen-Bory, Czech Republic, 2008

Chapter 3 Günter Wallner, Geometry of Arbitrary Light Distributions, ICGG 2008:
Proceedings of the 13th International Conference on Geometry and Graphics,
Dresden, Germany, 2008

Chapter 4 Günter Wallner, An Extended GPU Radiosity Solver Including Diffuse
and Specular Reflectance and Transmission, Accepted for publication in The
Visual Computer

Appendix A Günter Wallner, Force Directed Embedding of Hierarchical Cluster
Graphs, ROGICS 2008: Proceedings of the International Conference on Re-
lations, Orders and Graphs: Interaction with Computer Science, Mahdia,
Tunisia, 2008

The first paper delineates the application of shadow volumes to the creation of so
called shadow profiles, which describe the progression of shadows over a specific time
period. The creation of these profiles is accelerated by harnessing the computational
power of programmable graphics hardware and by employing a dual-space approach
for silhouette finding.

The second work was motivated by the work of Coombe et al. who published a pa-
per about Radiosity on Graphics Hardware in which they describe a radiosity solver
which completely runs on a GPU. The text at issue describes, inter alia, an imple-
mentation for a GPU radiosity solver for arbitrary triangular meshes, introduces a
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new method to identify elements on which adaptive subdivision should be performed
to improve the accuracy of the solution by determining shadow boundaries in im-
age space and introduces the concept of light distribution textures to incorporate
goniometric light sources into the radiosity process.

Light distribution textures are used to simulate hemispherical and omnidirectional
light sources for real time rendering in the third paper. Reconstruction of the pho-
tometric solid from the texture is improved by using bicubic interpolation with
Catmull-Rom splines (instead of linear interpolation). Such textures can also be
used to simulate various effect lights (e.g. disco lights).

The fourth article expands the GPU radiosity solver to include diffuse transmission
as well as specular reflectance and transmission. The solver is capable to handle
multiple specular reflections with correct mirror-object-mirror occlusions. Further-
more it describes the inclusion of ambient overshooting and delineates how a simple
proxy object with alpha masks can substitute complex geometry and thereby speed
up the computation times. A revised and abridged version of the article presented
here has been accepted as a full paper for Computer Graphics International 2009
and for publication in a special edition of The Visual Computer.

The last paper, which is not directly connected with the other four, and therefore
presented in the appendix, describes a force directed layout adjustment algorithm
for hierarchical cluster graphs. Hierarchical cluster graphs impose finer levels of
granularity – which may be controlled by the user – by grouping nodes according
to certain criteria. Clusters and hierarchies thereof can be dynamically closed and
opened with the presented technique. In addition a simple clustering algorithm which
proved useful for semantic nets is discussed.
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1. Geometry of Real Time Shadows

Shadows provide important visual cues about the spatial relationship among objects.
Shadow volumes are one way to generate sophisticated shadows for use in real time
environments. This paper focuses on the geometric aspects which are involved in
the creation of the shadow volume. Speed up techniques like shaders and dual space
approaches for silhouette determination are discussed. Finally the application of the
described methods in a software for shadow profile calculation is addressed.
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1.1. Introduction
Shadows are an important part in computer graphics because they can reveal infor-
mation that otherwise would not be ascertainable. Foremost, they reveal the spatial
relationship between objects in the scene. They also disclose new angles on an ob-
ject that otherwise might not be visible and they can also indicate the presence of
off-screen objects. These and other visual functions of shadows in computer graphics
are described by Birn in [6].

Shadow volumes have been first proposed by Crow in 1977 [9]. With the advent of
modern day computer graphic cards, shadow volumes are now possible in real time.
Heidmann [13] adapted Crow’s algorithm to hardware acceleration. His method is
now known as the z-pass method (because the stencil buffer is incremented/decre-
mented when a polygon passes the depth test). However, the z-pass method does
not work correctly if the near clipping plane intersects the shadow volume. Carmack
[7] solved the problem by using z-fail testing (the stencil buffer is incremented/decre-
mented when a polygon fails the depth test). The z-fail method still yields incorrect
results if the shadow volume is intersected by the far clipping plane. This problem
can be circumvented by moving the far clipping plane to infinity, as proposed by
Everitt and Kilgard [10].

Shadow maps (introduced by Williams [26]) are an image based alternative to shadow
volumes (which operate on the object geometry). In the meantime several different
shadow map algorithms have been developed. Both methods have their benefits and
drawbacks. For a comparison of the pros and cons of both methods see e. g. [25].

”Classic” shadow volume algorithms create hard shadows. A shadow region is divided
into two parts: the region which is fully in shadow (umbra) and the region which
is partially in shadow (penumbra). Hard shadows only consist of the umbra area.
Soft shadow volume algorithms have been among others studied by Assarsson and
Akenine-Möller [1, 2].

1.2. Assumptions and Definitions
The shadow volume algorithm requires that the shadow casting object must be a
2-manifold polygon mesh and free of non-planar polygons. 2-manifold means that
every edge of the mesh must be shared exactly by two polygons. It is also useful to
restrict oneself to triangular meshes, because modern graphics hardware is optimized
for triangle rendering.

Furthermore all triangles must have the same winding order. For the following discus-
sion a counter clockwise winding order and outward pointing normals are assumed.

A silhouette edge is an edge adjacent to one front-facing and one back-facing polygon.
A polygon is called front-facing in respect to the light if the dot-product of its
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normal and the vector from the light position and a point on the polygon is positive.
Respectively a polygon is called back-facing in respect to the light if the dot-product
is negative.

A border edge is an edge which is only adjacent to one face (which implies that the
mesh is open). It should be noted that we can handle open meshes if we treat border
edges as part of the silhouette. The silhouette is the set of all silhouette edges (and
border edges).

1.3. Overview
I will first give an overview of the z-pass algorithm and then point out the differences
in respect to the z-fail algorithm. The basic concept is to use the stencil buffer as a
masking mechanism to prevent pixels in shadow from being drawn during the render
pass for a particular light source [16]. First of all the stencil buffer is initialized with
zero and the z-buffer is initialized with the depth values of the visible objects during
a first rendering pass. In this pass only light independent attributes are considered
(e.g. ambient light). Then the shadow volume is rendered with writes to the color
buffer and depth buffer disabled. This is usually done in two steps. First, the front
faces of the shadow volume (in respect to the camera position) are rendered and the
stencil buffer is incremented each time the fragment passes the depth test. Second,
the back faces are rendered. This time decrementing the value in the stencil buffer
when a fragment passes the depth test. As shown in Figure 1.1, this leaves non-zero
values in the stencil buffer wherever the shadow volume intersects a visible object.
Figure 1.1 in addition shows why this approach fails, if the shadow volume intersects
the near clipping plane.

As noted by Batagelo and Costa [4] the front faces must be rendered before the back
facing polygons to avoid shadow counting overflow. That is, because under OpenGL
the result of the increment and decrement functions is clamped to lie between 0 and
the maximum unsigned integer value (2n − 1 if the stencil buffer holds n bits) [20].
However, rendering the shadow volume geometry twice is a suboptimal solution.
The OpenGL extension EXT_stencil_two_side [23] allows separate stencil states
for front faces and back faces to be specified simultaneously. Therefore front faces
as well as back faces can be rendered at once. Though this time it is not guaranteed
that the front facing polygons will be rendered before the back faces. Consequently
the feasibility exists that the stencil value for a particular pixel is decremented before
incremented. We can account for that possibility by using another OpenGL exten-
sion, namely EXT_stencil_wrap [22], which allows stencil values to wrap when they
exceed the maximum and minimum stencil values.

Several authors [5, 4, 7] proposed methods that cap the shadow volume at the near
plane. However, these are computationally expensive and they suffer from robustness
problems.
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Figure 1.1.: The z-pass method. The val-
ues at the end of the rays represent the val-
ues left in the stencil buffer. Note that the
stencil value of the leftmost ray is wrong due
to the clipping of the shadow volume of the
sphere at the near clipping plane.

Figure 1.2.: The z-fail method. The val-
ues at the intersection of the ray and the
near clipping plane represent the values left
in the stencil buffer. This time the stencil
value for the ray passing through the sphere
is correct.

Carmack [7] and others therefore suggested the z-fail algorithm. Instead of counting
the shadow faces in front of a particular pixel, the shadow faces behind are counted.
This time the near clipping plane problem is avoided because shadow volume ge-
ometry between the eye and the pixel is nonrelevant. Figure 1.2 shows the z-fail
approach. As already mentioned in the introduction the z-fail approach moves the
near clipping plane problem to the far plane, which can be prohibited by using an
infinite projection matrix (see Section 1.6).

1.4. Silhouette Detection
To calculate the shadow volume we first have to determine the silhouette of the
shadow casting object. The so-called brute force method for detecting silhouette
edges is to loop through all edges and check the dot-product of the adjacent trian-
gles. Since silhouette detection is one of the two major bottlenecks (beside fill rate
consumption), as pointed out by Kwoon [15], it is appropriate to use more sophisti-
cated methods. Barequet et al. [3] developed a dual space approach for silhouette
extraction in 3D and Hertzmann and Zorin [14] used a similar method but moved
to four dimensions. Most recently Olson and Zhang [21] presented a paper about
silhouette extraction in Hough space.

Because Hertzmann and Zorin [14] are concerned with non photorealastic rendering
they determine the silhouette in respect to the viewpoint. However, in case of shad-
ows the silhouette depends on the light position. Therefore the viewpoint must be
substituted with the light position. Hertzmann and Zorin [14] build a dual surface
by mapping each vertex v to a homogeneous point v′ = (vx, vy, vz,−(v ⋅ n)) where
n is the unit normal vector of the vertex v. The dual surface has the same con-
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nectivity but different vertex positions. A dual edge e′ of an edge e = (v1,v2) is
a tuple (v′1,v

′
2). Let L be the homogeneous light position. An edge e belongs to

the set of silhouette edges if L ⋅ v′1 >= 0 and L ⋅ v′2 < 0 or vice versa. Each v′ is
then normalized to make sure that each point of the dual surface lies inside the unit
hypercube. This allows us to store each dual edge in a 4D variant of an octtree (I
will call it hextree in the further discussion) as pointed out by Claes et al. [8]. At
the highest level this hextree ranges from (−1,−1,−1,−1) to (1, 1, 1, 1). The space
can be repeatedly divided into 16 smaller hextrees until a small enough partition is
reached. A dual edge e′ is then inserted into the smallest subcube which encloses v′1
as well as v′2.

Instead of using two bounding boxes per subcube to determine if the dual edges
have to be verified [8] I use a different approach. For testing if an AABB1 and a
plane intersect in two dimensional space, the box diagonal which is most aligned
with the normal of the plane has to be found first. Second the diagonals vertices
(vmin and vmax) are inserted into the plane equation. If the signs of result differ
or at least one of them is zero, then the plane intersects the box [19]. Möller and
Haines [19] also point out that the two vertices can be found directly. The signs
of the components of the plane normal are used as a bit mask. If this mask is
interpreted as a number it can be used as index to an array of AABB vertices. This
approach can easily be extended to four dimensions. Each of the 16 vertices of a 4D
cube is stored in an array so that the minimum vertex is located at index 0 and the
maximum vertex at position 15. Instead of the plane normal we interpret the signs
of the components of L as a bit mask. The index i of vmin can then be calculated
as i = 8 ⋅ sgn(Lx) + 4 ⋅ sgn(Ly) + 2 ⋅ sgn(Lz) + sgn(Lℎ) where

sgn(x) =

{
0 x >= 0

1 otherwise.
(1.1)

The vmax vertex can be found by inverting the bit mask. The dual edges of a
subcube must only be tested if L ⋅ vmin >= 0 and L ⋅ vmax < 0 or vice versa.

Building the dual surface and inserting the dual edges into the hextree can be
done once in a preprocessing step as long as the connectivity of the object does
not change. Furthermore silhouette detection must only be performed if the object
position changes in respect to the light position.

1.5. Shadow Volume Construction
Once the set of silhouette edges is determined the edges must be extruded to form
the shadow volume. As described by Lengyel [16], no matter what finite distance

1AABB stands for Axis Aligned Bounding Box. Assuming an AABB is valid in our case because
the hextree is axis aligned.



8 1. Geometry of Real Time Shadows

Figure 1.3.: Silhouette extrusion for a point light (left) and for a directional light (right)

silhouette edges are extruded, it is still possible that the shadow volume reaches not
far enough to cast a shadow on every object in the scene that should intersect the
volume. This problem worsens when the light source is very near to the shadow
casting object, but it can be circumvented by using an infinite projection matrix.
How this matrix can be obtained is described in Section 1.6.

In order for the z-fail algorithm to work correctly the shadow volume must be a closed
volume where all polygons must have a consistent winding order. A complete shadow
volume consists of: (1) the front cap (consisting of all front-facing polygons), (2) the
extruded silhouette edges and (3) the back cap. It is notable that the extrusion
of the geometry depends on the light source. For a point light the vertices of the
silhouette edge must be extruded to infinity along the vector from the location of
the point light to the vertex (see Figure 1.3). If v = (vx, vy, vz, 1) is the position of
the vertex to be extruded and L is the position of the point light then the extruded
vertex ve = (vx − Lx, vy − Ly, vz − Lz, 0).

For a directional light all extruded points converge to a single point in infinity (see
Figure 1.3) at position (−Lx,−Ly,−Lz, 0). This implies that the back cap is not
necessary for directional light sources. The back cap conventionally consisted of all
back-facing polygons projected away from the light [10, 16]. But since the back cap
is at infinity the shape does not matter [18]. The only constraint which remains
is that the back cap must actually close the volume. This can be achieved with a
simple triangle fan constructed from the extruded silhouette edges [18, 15].

The z-pass algorithm doesn’t use caps, hence the incorrect results when the shadow
volume intersects the near clip plane (see [10] for details) or the viewpoint is inside
the volume. From this point it is clear that the z-fail method is computationally
more expensive and should only be used when necessary. To determine whether
the shadow volume is clipped by the near plane the near clip volume has to be
constructed. The near clip volume is bounded by the planes which connect the near
rectangle to the light position, as shown in Figure 1.4. The near rectangle is the area
cut out of the near plane by the four side planes of the view frustum. Only an object
which is inside this near clip volume can cast a shadow onto the near clipping plane.
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Figure 1.4.: An Object O is casting a shadow onto the near clip plane because it partially
intersects the near clip volume (shaded)

For a comprehensive description see [16].

Silhouette edge extrusion can now be done on graphics hardware to remove the
burden from the CPU. The following Cg vertex shader extrudes a vertex v =
(vx, vy, vz, vw) if vw = 0 otherwise the position is just passed through.

float4 lightToVertex = IN.position - lightPos;

float m = 1 - IN.position.w;
float4 outx = IN.position *(1-m) +

lightToVertex*m;
outx.w = IN.position.w;

// transform position to homogenous clip space
OUT.HPOS = mul(ModelViewProj , outx);

Listing 1.1: Silhouette extrusion shader for a point light

IN.position is the vertex coordinate and lightPos is the position of the point light.
If shaders are used, oneself has to take care to transform the vertex position into
homogenous clip space, hence the multiplication with the modelview-projection ma-
trix. For this approach to work correctly each vertex of the silhouette must be passed
twice to the shader. Once with vw = 1 and once with vw = 0. The extrusion for a
directional light looks similar.
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1.6. Infinite Projection Matrix
The OpenGL projection matrix is defined as [20]:

P =

∣∣∣∣∣∣∣∣∣
2⋅n
r−l 0 r+l

r−l 0

0 2⋅n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2⋅f ⋅n
f−n

0 0 −1 0

∣∣∣∣∣∣∣∣∣ (1.2)

Where f is the distance from the viewer to the far clip plane, n the distance to the
near clip plane and r and l are the respective distances to the left and right clip
plane. t and b are the distances to the top and bottom clip plane. We can obtain
the infinite projection matrix by calculating P∞ = lim

f→∞
P which yields

P∞ =

∣∣∣∣∣∣∣∣
2⋅n
r−l 0 r+l

r−l 0

0 2⋅n
t−b

t+b
t−b 0

0 0 −1 −2 ⋅ n
0 0 −1 0

∣∣∣∣∣∣∣∣ (1.3)

An infinite projection matrix reduces the depth buffer precision only marginally as
pointed out by Everitt and Kilgard [10]. However, if you are concerned about this loss
you can use Nvidia’s NV_depth_clamp [24] extension. If depth clamping is enabled
the near and far clipping plane are disabled for rasterizating geometry primitives.

1.7. Rendering
Here I present the necessary steps to render shadow volumes with OpenGL. First
we render the scene with enabled depth writes, backface culling and with ambient
lighting only (light independent attributes). This makes sure that the depth buffer is
initialized with the correct depth values. Afterwards we disable writes to the depth
buffer and turn off ambient lighting.

glEnable(GL_LIGHTING);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT , ambient);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);

drawScene ();

glDepthMask(GL_FALSE);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT , zero);

The stencil mask has to be calculated separately for each light source.
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for each light source
{

First we clean the stencil buffer, configure the stencil test so that it always passes and
disable writes to the color buffer. We will make advantage of two side stencil testing
so that we only have to render the shadow volume of each occluder once. Therefore
the stencil operation is set to increment and decrement for front- and back-facing
polygons respectively – when the depth test fails. Culling is also turned off because
front as well as back faces must be rendered at the same time.

glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS , 0, ~0);
glStencilMask (~0);

glColorMask(GL_FALSE , GL_FALSE , GL_FALSE , GL_FALSE);

glActiveStencilFaceEXT(GL_BACK);
glStencilOp(GL_KEEP , GL_INCR_WRAP_EXT , GL_KEEP);
glActiveStencilFaceEXT(GL_FRONT);
glStencilOp(GL_KEEP , GL_DECR_WRAP_EXT , GL_KEEP);

glDisable(GL_CULL_FACE);
glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

Now the shadow volume of each occluder in the scene is rendered. Afterwards culling
is turned on and the stencil test is disabled. At that time the stencil buffer holds
the correct information which pixels are in shadow and which aren’t.

for each occluder
{

renderShadowVolume(occluder);
}

glEnable(GL_CULL_FACE);
glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);

The whole scene is now rendered again. This time the current light is enabled and
configured (all light dependent attributes). Stencil testing is configured so that only
pixels with a zero stencil value are rendered. Equal depth testing is used so that only
visible fragments are updated. Since this pass adds to the ambient scene already in
the color buffer additive blending must be enabled as well as writes to the color
buffer. After rendering the scene blending is disabled and the depth function is
restored to less depth testing.

glEnable(light);
configureLight(light);
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glEnable(GL_BLEND);
glBlendFunc(GL_ONE , GL_ONE);
glColorMask(GL_TRUE , GL_TRUE , GL_TRUE , GL_TRUE);

glStencilFunc(GL_EQUAL , 0, ~0);
glStencilOp(GL_KEEP , GL_KEEP , GL_KEEP);
glDepthFunc(GL_EQUAL);

renderScene ();

glDisable(GL_BLEND);
glDepthFunc(GL_LESS);

}

After the above steps have been carried out for all lights, stencil testing is disabled
and writes to the depth buffer are enabled.

glDisable(GL_STENCIL_TEST);
glDepthMask(GL_TRUE);

1.8. Application: Shadow Profiles
I have succesfully applied shadow volumes in an application for calculating shadow
profiles in real time. A shadow profile shows the casted shadow of an object over
a specific time period. This is, for example, of concern for architects to find out
how long the surrounding is obscured by a building. After providing the required
information needed for computing the position of the sun2 (latitude, date, time) and
the time period the shadow profile is calculated.

The application can detect the silhouette either by brute force or with the above
described dual space approach. If the graphics card supports vertex and fragment
shaders, silhouette extrusion and per pixel lighting is performed on the GPU. Other-
wise the CPU handles the extrusion and standard OpenGL lighting is used. Double
sided stencil testing is performed if EXT_stencil_two_side is supported. The z-fail
algorithm is only applied if necessary (see Section 1.3).

Figures 1.5 to 1.7 show some sample scenes. Table 1.1 shows the time needed for
brute force silhouette detection for each scene and Table 1.2 for dual space silhou-
ette detection, respectively. All measurements were taken on a Pentium 4 3.4Ghz
processor with 1GB memory. For each scene a hextree with a fixed depth of four
was chosen for the dual space approach.

2See [12] for a description of the calculation
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Scene Number of trianglesa ∼time [ms]
Eiffel Tower 11353 (11155) 4.584
Industry Area 13615 (13585) 7.299

Uniqua Building 182038 (147296) 44.486
Uniqua Building 182038 (182038) 58.666

Table 1.1.: Performance with brute force silhouette detection
aFirst number: total triangles in the scene. Second number: triangles of shadow casting objects

Scene Number of triangles ∼time [ms]
Eiffel Tower 11353 (11155) 4.236
Industry Area 13615 (13585) 5.799

Uniqua Building 182038 (147296) 39.331
Uniqua Building 182038 (182038) 48.872

Table 1.2.: Performance with dual space silhouette detection

1.9. Future Work
The results show that silhouette detection can greatly improve performance. As
further work it would be interesting to see how hough space silhouette finding [21]
can further speed up the process. At this time no techniques to reduce fill rate con-
sumption were implemented. Lengyel [16] describes how OpenGLs scissor rectangle
support can be used to cut down the fill rate penalty for rendering the shadow vol-
umes. That is because the hardware does not generate fragments outside the scissor
rectangle. The scissor rectangle can be applied on a per light basis or per geome-
try basis, as pointed out by Lengyel [17]. Everitt and Kilgard [11] suggest a depth
bounds test for stencil writes. This idea is based on the observation that some depth
values can never be in shadow, so incrementing and decrementing the stencil buffer
is needless.

Figure 1.5.: left: Casted shadows of an industry area located at a latitude of 45.2∘ north on
the 18th September at 3pm. middle: Visualization of the shadow volumes (yellow). right:
The shadow profile of the scene over a time period of three hours (12pm until 3pm in 30
minutes time steps).
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Figure 1.6.: left: Shadow of the Eiffel Tower in Paris (latitude of 48.8∘ north) on the 18th
September at 2pm. middle: Visualization of the shadow volume (yellow) and the silhouette
edges (pink). right: Shadow profile over a time period of four hours (10am until 2pm in 30
minutes intervals).

Figure 1.7.: Proposal for the Uniqua building in Vienna (48.2∘ north) by Hans Hollein. A
color was assigned to each structural component. left: Only the facade (yellow) and the
concrete (green) is casting a shadow. middle: The complete building is casting a shadow.
right: The shadow profile over a time period of eight hours (9am until 5pm in 1 hour inter-
vals) on the 18th September.

1.10. Conclusions
In this paper I have presented the necessary steps for a robust implementation of
stencil shadow volumes. Stencil shadow volumes suffer mainly from two bottlenecks:
(a) fill rate and (b) silhouette detection. The latter was discussed in Section 1.4.
Modern graphics hardware can take over computations which formerly had to be
performed on the CPU, e.g. silhouette extraction. Code snippets showed how stencil
shadows can be implemented with OpenGL. Extensions to OpenGL provide further
ways to improve performance.
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2. GPU Radiosity for Triangular Meshes
with Support of Normal Mapping and
Arbitrary Light Distributions

This paper describes an implementation of a progressive radiosity algorithm for trian-
gular meshes which works completely on programmable graphics processors. Errors
due to the rasterization of triangles are fixed in a post-processing step or with a
fragment shader during runtime. Adaptive subdivision to increase the accuracy of
the radiosity solution can be performed during render-time. Since we found that the
gradient is not very robust to determine whether triangles should be subdivided or
not, we propose a new technique which uses hardware occlusion queries to deter-
mine shadow boundaries in image space. The GPU implementation facilitates the
simple integration of normal mapping into the radiosity process. Light distribution
textures (LDTs) enable us to simulate a variety of real world light sources without
much computational overhead. The derivation of such an LDT from a EULUMDAT
file is described.
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2.1. Introduction
Computer image generation has been driven by two major factors: realism and
interactivity. The former has led to a variety of global illumination algorithms such
as radiosity. Radiosity was first introduced to computer graphics by Goral et al.
[16] to simulate the light interaction in strictly diffuse environments. The fraction
of the radiant light energy leaving one particular surface which strikes a second
surface is defined as the so-called form factor. These form factors can be obtained
by computing the coifficients of a set of linear equations. Cohen and Greenberg
[11] introduced the hemicube to support scenes with occluded surfaces, which where
not considered in the original implementation. In [10], Cohen et al. presented a
progressive refinement approach which eliminated the O(n2) storage requirements
of former methods by calculating the form factors on-the-fly. Further speed ups
can be gained by implementing the substructuring approach from Cohen et al. [9]
where light is shot from a courser mesh to a finer sets of elements. Smits et al. [26]
published a radiosity implementation which focuses on those parts of the scene which
affect an image most. Although radiosity is usually restricted to diffuse surfaces,
generalizations of the radiosity method which can handle general reflectance (e.g. by
Sillion et al. [24]) and volumetric scattering due to participating media like smoke
([21]) have been proposed. A comprehensive treatment of the radiosity method
can be found in [25] and [12]. However, for completeness the essential features are
reviewed in Section 2.2.

Modern GPUs opened up a whole new research area, allowing researchers to compute
a radiosity solution in much faster time or even at interactive rates. Keller [17]
generates a particle approximation of the diffuse radiance in the scene using quasi-
Monte Carlo integration. Afterwards, the graphics hardware renders an image with
shadows for each particle which are considered as point light sources. Martin et al.
[18] calculated a hierarchical radiosity solution on the CPU and refined the result by
generating textures that represent the diffuse illumination. Nielsen and Christensen
[19] accelerated the hemicube method using graphics hardware. Carr et al. [7] used
floating point textures to store the result of the radiosity computation. Gautron et al.
[15] adapted the irradiance cache ([30]) to graphics hardware. However, all of these
publications used graphics hardware to accelerate certain elements of the radiosity
solution. Coombe et al. [13] finally proposed a progressive radiosity implementation
which worked solely on the GPU.

This paper follows the approach by Coombe et al. but extends it to arbitrary tri-
angular meshes. Further contributions are the inclusion of normal mapping into the
radiosity process, the support of arbitrary light distributions due to the use of light
distribution textures (LDTs) and new way to determine shadow boundaries for adap-
tive subdivision. Figure 2.1 shows a radiosity solution obtained with our method.
The reminder of this paper is structured as follows. Section 2.2 reviews in short the
basics of radiosity and the progressive radiosity approach and Section 2.3 describes
our implementation. Adaptive subdivision is explained in Section 2.4. We conclude
the paper by presenting results and sample images (Section 2.5) as well as future
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Figure 2.1.: GPU radiosity solution of a scene with 6534502 elements distributed over
13627 triangles.

work (Section 2.6).

2.2. Progressive Radiosity
The radiosity method evaluates the intensity (or radiosity) of discrete points and
surface areas in a diffuse environment. The radiosity Bi of an element i is given by
[16]

Bi = Ei + �i

n∑
j=1

BjFij (2.1)

where Ei is the emission, �i the reflectivity and Fij the form factor between element
i and j. Fij is purely geometrical in nature and describes the fraction of energy
leaving element j impinging on element i. If using the disc approximation of Wallace



20 2. GPU Radiosity for Triangular Meshes

et al. [29] to the differential form factor equation (Figure 2.2), Fij is given by

FdAi,Aj (= Fij) = Aj

m∑
i=1

cos(�i) cos(�j)

d2� +
Aj
m

(2.2)

wherem is the number of sampling points on Aj . As noted by Coombe et al. [13] this
disc approximation reduces artifacts between adjoining faces exhibited by the original
form factor formulation [16] when used in conjunction with projection methods, like
the hemicube approach by Cohen and Greenberg [11]. To assure conversation of
energy in a closed environment the sum of all form factors for a given element i is
equal to unity:

n∑
j=1

Fij = 1 for i = 1 . . . n (2.3)

Contrary to the conventional radiosity algorithm, where all the form factors for the
entire scene are precalculated, form factors are calculated on-the-fly in a progressive
radiosity solver. Furthermore, shooting is always performed from the element radi-
ating the most light energy, since those typically have the greatest impact on the
illumination, leading to a solution which converges quickly in regard to accuracy.
Additionally an ambient radiosity term

A = R
n∑
j=1

ΔBjF
′
ij for any i (2.4)

was introduced by Cohen et al. [10] to estimate reflected light in the earlier iterations,
yielding a more adequate illumination during early stages. ΔBj represents the unshot
radiosity. F ′

ij is a first approximation to the form factor and is given by

F
′
ij =

Aj∑n
k=1Ak

∀i (2.5)

and the interreflection factor R is defined as

R =

(
1−

∑n
k=1 �kAk∑n
k=1Ak

)−1
(2.6)
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Figure 2.2.: The form factor between a differential area dAi and a polygon j which is
divided into m sections. Each section gets approximated by a disc.

2.3. Implementation
This section describes our radiosity implementation in detail. For each triangle two
32bit RGBA floating point textures are stored which hold the radiosity and residual
energy respectively. The RGB components are used to store the illumination and
the alpha channel is used to determine if a particular texel of the texture is occupied
by the triangle (A = 1) or not (A = 0).

In a preprocessing step each triangle is rendered orthographically into a framebuffer
of size (2n − 2)× (2n − 2). During rendering an occlusion query is issued to retrieve
the number of texels occupied by the triangle. The area of a single element of a
triangle can then be obtained by dividing its area with the result of the occlusion
query. Note that due to partially covered pixels the area of an element is slightly
underestimated. However, we found that no significant error is caused by this. The
texture coordinates are retrieved by multiplying the vertex coordinates with the
modelview-projection matrix used for rendering and shifting the values to the range
[0, 1]. The result is then centered in a texture of size 2n×2n to allow for interpolation
in the post-processing step. Furthermore all textures are placed in a texture atlas of
size 2m × 2m to reduce the number of texture switches during the radiosity process
and the number of readbacks during the next shooter selection. All textures have
power-of-two dimensions to allow for mipmapping.

After the preprocessing step the progressive radiosity solver starts until the result has
converged or a maximum number of iterations has been reached. At the beginning
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of each iteration the next shooter is determined. To find the triangle with the
highest residual power the nth level of the mipmap pyramid is constructed from
each residual texture atlas using a fragment program and a ping-pong rendering
scheme. This results in a texture where each texel corresponds to the averaged
residual intensity (I = 0.3 ⋅ R + 0.59 ⋅ G + 0.11 ⋅ B) of a triangle. The reasons for
a fragment program are twofold. First, graphics hardware may or may not support
hardware mipmapping for floating point textures. Second, only texels which are
occupied by the triangle may influence the average. Therefore our fragment shader
only averages texels whose alpha channel equals one. The alpha channel of the new
texel is set to one if one of the four original texels alpha value is one. The values are
read back and multiplied by the area of the corresponding triangle to retrieve the
residual power. The resulting values are compared and the triangle with the highest
residual power is chosen as next shooter. During the next shooter selection the
ambient radiosity term from Equation 2.4 is calculated. Since the average residual
energy of a triangle is evaluated nevertheless and the overall interreflection factor
can be precalculated, the computational expense is negligible.

Once a shooter has been selected, all the elements of the triangle shoot their energy
in turn. The selected triangle is rendered orthographically into a framebuffer with
two color attachments. A fragment shader outputs the interpolated normals and
world positions of this triangle. As suggested by Coombe et. al [13], substructuring
([9]) can be supported by constructing a lower resolution mipmap of the residual
texture. In our case, we also construct the mipmap from the normal and the world
position map. The resulting residual mipmap gets sampled and each texel whose
alpha channel equals one shoots its energy.

To determine the visibility from the current shooter, we follow the approach of
Coombe et. al [13] and render the scene from the point of view of the shooter using
a stereographic projection into a visibility texture. The position and orientation of
the shooter are retrieved from the world position and normal map. However, instead
of using color-encoded IDs of the polygons, we store the depth values as proposed
by Barsi and Jakab [2]. Based on the front (fp) and back clipping distances (bp) the
depth value is calculated in a vertex shader as shown in Algorithm 2.1.

pos = mul(modelView , position);
float z = (-2*pos.z-bp -fp)/(bp-fp); // [ -1..1]
float zDepth = -z/bp // [0..1]

Listing 2.1: Vertex shader code for calculation of the depth value

Since only vertices are affected by the stereographic projection, several errors are
introduced, especially near the equator of the hemisphere. For example, convex
quads may get concave after the projection, which leads to rasterization artifacts.
Working with depth values instead of polygon IDs eliminates dot artifacts1, since

1Due to the limited resolution of the visibility map and errors introduced by the projection, nearby
elements of the scene may be mapped to the same texel.
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Figure 2.3.: Light Grey parts of the image are visible from the shooter, black ones aren’t. If
only one texel in the visibility texture is evaluated for depth correspondence artifacts appear
near silhouette edges (left). Comparing also the neighboring texels removes those artifacts
(right).

a tolerance value can be used when the visibility checks are performed later in the
process. Triangles behind the hemisphere are culled away be checking against the
plane defined by the position and normal of the shooter. For the remaining triangles,
an occlusion query is issued.

Every triangle that might have received energy (triangles which pass the occlusion
query test) is rendered orthographically to a framebuffer of size (2n − 2)× (2n − 2).
However, instead of back-projecting the texels into the shooter’s viewpoint, as done
by Coombe et al. [13], the back projection is done in a vertex shader and the resulting
position is passed to the fragment shader. This way the same error occurs during
back projection as observed in the creation of the visibility texture. The fragment
shader compares the depth value of the texel with the depth value stored in the
visibility texture. We found that we can further reduce artifacts – mainly in areas of
silhouette edges from the shooter’s point of view – if we also check the neighboring
texels in the visibility texture for correspondence with the – currently examined –
texels depth (see Figure 2.3).

If the texel is declared visible, the form factor equation from Equation 2.2 is evaluated
by the fragment program. The radiosity value is gained by multiplying the form
factor, the shooters energy and the color as well as the reflectivity r of the receiver
and adding it to the radiosity texture. Respectively the residual texture is updated
by taking 1 − r. After all texels of the shooter have shot their energy, the residual
texture of the shooter is set to zero.

After the post-process (described in Section 2.3.1), the floating point textures are
tone mapped using either a simple exposure function or a GPU implementation of
the global tone mapping operator from Reinhard [20].

2.3.1. Rasterization of Triangles

According to the OpenGL specification [23] polygons and line segments are rasterized
differently. For lines OpenGL uses a "diamond-exit" rule. This means that for each
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fragment f with center at window coordinates xw and yw a diamond shaped region
Rf is defined as

Rf = {(x, y)∣∥x− xw∥+ ∥y − yw∥ <
1

2
} (2.7)

A good description of OpenGL’s line rasterization can be found in [27]. For polygons
OpenGL follows the point-sampling rule. Only fragments which centers lie inside
the polygon are produced by rasterization. Special treatment is given to a fragment
whose center lies on a polygon boundary edge (see [23] for details). However, we
are not concerned about the exact details because those fragments get rasterized by
line-rasterization anyway. Figure 2.4 shows the rasterization of a triangle. Since not
all fragments – which are needed for texturing – are rasterized (these are shown red
in Figure 2.4), the missing fragments are interpolated from the neighbor intensities
in a post-processing step. To reduce artifacts due to rasterization, two steps are
taken. First, every triangle is rendered twice. One time the polygon itself and
next the outline with a line width of 1. It should be noted that using a line width
greater than 1 leads to artifacts, since more than one fragment of the line has the
same texture coordinate assigned, therefore pointing to the same location in the
radiosity map. Second, after the radiosity solver has finished a textured quad is
rendered orthographically to a framebuffer at the same resolution as the assigned
radiosity texture to establish a one-to-one correspondence with the fragments of the
framebuffer. A fragment program linearly interpolates the intensities for fragments
which neighbor at least one fragment whose alpha channel is one. Only fragments
occupied by the triangle are considered for interpolation. Since the textures are
interpolated linearly for rendering, this is done twice, using a ping-pong technique.
Fragments produced by this step are marked with black (first iteration) and blue
(second iteration) dots in Figure 2.4. These fragments are only used for display
purposes, therefore they are neither considered in the radiosity process nor do they
alter the size of a triangle.

2.3.2. Light Distribution Textures

To include arbitrary light distributions into the radiosity process, we propose a so
called light distribution texture (LDT). These textures can be derived from a EU-
LUMDAT file or any other similar photometric file format. An English translation
of the EULUMDAT specification can be found at [1]. Concordant do the specifica-
tion we denote the number of C-planes as mc. The number of light intensities in a
C-Plane (vertical planes through the light distribution) is designated as ng. Figure
2.5 shows the light distribution curve of a luminaire and it’s 3D representation.

Although the EULUMDAT file stores photometric values and the radiosity method
works with radiometric values, the normalized light distribution can be used as is.
We can show that the radiant intensity Ie = kIv, where k is some constant and Iv
the luminous intensity (an in-depth treatment of lighting engineering can be found,
for example, in [14]).
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Figure 2.4.: Rasterization of a triangle with OpenGL. Light gray fragments are produced
by polygon-rasterization. Dark gray rectangles depict fragments which were produced ad-
ditionally by line-rasterization. Red fragments represent fragments which would be needed
for GL_NEAREST texture sampling but have not been rasterized.

Figure 2.5.: The light distribution of a Zumtobel KAREA-S luminaire (left) and its 3D repre-
sentation with mc = 24 (middle). The red line depicts the intersection of the light distribution
with the plane C0/180 and the blue line with plane C90/270 respectively. The texture de-
rived from the luminaire’s light distribution is shown on the right.

Proof. The radiant intensity can be written as

Ie =
d�e
dΩ

(2.8)

where �e is the radiant flux and Ω the solid angle, and the luminous intensity can
be written as

Iv =
d�v
dΩ

(2.9)

Furthermore the luminous flux �v is defined as
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�v = Km

∫ 780nm

�=380nm
�e�V (�)d� (2.10)

For a monochromatic lightsource we can reduce Equation 2.10 to

�v = KmV (�)�e (2.11)

where Km = 683 lmW−1 is the sensitivity of the eye at 555 nm and V (�) = 1 for
photopic vision (these values can be gained from the photopic vision curve V (�)).
For values of V (�) refer, e.g. to [14]. Substituting into Equation 2.8 we get

Ie =
1

683d�v

dΔΩ
=

1
683IvdΔΩ

dΔΩ
=

1

683
Iv (2.12)

An LDT stores the light distribution of a luminaire of one half space and has dimen-
sion n′g ×mc where n′g is the number of intensities of a C-Plane in one half-space.
The intensity values are retrieved from the light distribution and divided by the max-
imum intensity value Imax to normalize the values to the range [0..1]. These values
are written into the texture, where each horizontal line represents the intensity val-
ues of a C-Plane. The relationships are shown in Figure 2.5. Texture sampling is set
to linear to automatically interpolate between the discrete measurements. To assure
continuity at the boundary of 0° and 360°, the texture wrap mode in v-direction
is set to GL_REPEAT. By storing only the normalized intensity distribution the
texture can be reused for luminaires with the same light distribution but different
intensities.

To access the LDT, the azimuth �r and elevation �n of the vector d with respect to
the reference system of the light source given by (n0, r0,u0) is determined. We use
the subscript 0 to denote unit vectors. Figure 2.6 shows a geometrical representation
of the problem. Normalizing the angles to the range [0, 1] yields

xt = 1 +
min(�n − �/2, 0)

(�/2)
(2.13)

yt =

{
1− 0.5�r

� u0 ⋅ d ≤ 0
0.5�r
� otherwise

(2.14)

as texture coordinates (xt, yt). According to Sillion et al. [24] the energy d2E emitted
by a differential area dAi around a point Ti in the direction of unit vector d0 and
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Figure 2.6.: The texture coordinates of the LDT for a given direction vector d between the
lightsource L and receiver R depend on the azimuth �r and elevation �n of this vector. The
light distribution is depicted as red curve.

falling on a differential area dAj around a point Tj is then given by

d2E = I(T1,d0)
cos(�j)cos(�i)

d ⋅ d
dAjdAi (2.15)

where I(T1,d0) is the intensity leaving the surface. In our case the intensity is
retrieved by sampling the LDT at position (xt, yt) and multiplying it with Imax.

2.3.3. Normal Mapping

Inclusion of normal mapping [8] into the radiosity process is straightforward. Instead
of taking the interpolated vertex normals for calculation of �j the perturbed normal
is used. If the normals stored in the normal map are given in tangent space and since
the light calculation is handled in world space, the vector d has to be transformed
appropriately into tangent space. For static scenes the required tangent vectors can
be calculated during the preprocessing step. Figure 2.7 and Figure 2.9 show results
obtained with normal mapping.

However, it is worthy to note that if normal mapping and multitexturing is used
simultaneously the resolution of the radiosity texture should correspond to the reso-
lution of the normal map. Otherwise artifacts will appear because the result of light
calculation does not overlay correctly with the texture of the object. Note also that
illumination may change if normal mapping is used, because the shooting order need
not necessarily be the same as without normal mapping.



28 2. GPU Radiosity for Triangular Meshes

Figure 2.7.: Radiosity solution of a simple box. Once without normal mapping (left) and
one time with normal mapping enabled (right).

2.4. Adaptive Subdivision
The accuracy of the radiosity solution depends very much on the underlying mesh.
As noted by several authors (e.g. [12]) uniform subdivision is not the best ap-
proach for radiosity, since some areas may be undersampled and others oversampled.
Furthermore a too coarse mesh can introduce shadow leakage ([4, 6]). Several tech-
niques to identify elements that require subdivision have been proposed (see [12] for
an overview). For example, Vedel and Puech [28] subdivide if the gradient of the
radiosity values varies more than a certain threshold. Campbell [5] splits an element
perpendicularly to the line connecting the maximum and minimum points of an el-
ement, if the difference between the extrema exceeds a certain threshold. Campbell
and Fussell [6] suggested a geometrical approach where the receiver polygon is tested
against the shadow volume, generated by the light source and the occluding surfaces.
However, the method is computationally expensive and does not scale well to com-
plex scenes. We therefore propose the following method to determine if an element
should be subdivided or not, by rendering the scene three times from the point of
view of the shooter with a stereographic projection.

Step 1 Render the scene without depth testing and with occlusion queries enabled.
This gives the complete number of rasterized fragments nr for a triangle (in-
dependent from rendering order).

Step 2 Render the scene with depth testing enabled to initialize the depth buffer.

Step 3 Render the scene with depth testing and GL_LEQUAL as depth function
and occlusion queries enabled. This yields the number of visible fragments nv.

If nr ∕= nv there has to be a shadow boundary on this triangle. The triangle is
subdivided if bl ≤ nv/nr ≤ bu where 0 ≤ bl ≤ 1 and 0 ≤ bu ≤ 1 are the lower and
upper threshold respectively. This avoids subdivision of triangles where the shadow
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Figure 2.8.: The scene consists of 9012 triangles which are divided into 4259072 elements.
The street lamp is simulated with a standard Lambertian light, the head and taillights are
simulated with four spotlights. Each triangle was assigned a 32 × 32 radiosity texture and
shooting was done from the third mipmap level.

Figure 2.9.: A scene illuminated by a Zumtobel wallwasher. There are 18436 triangles
in the scene yielding 8440590 elements. The left image shows the scene without normal
mapping, the middle and right image where rendered with normal mapping. The right image
is a close-up view of the statue showing the reflecting light from the wall.

boundary is short.

In our implementation, we account for subdivision before shooting the first time
from a triangle. If the area of the shooter is small, we found that a sufficient trade-
off. In such a case, the rendering of the visibility texture can be combined with
the steps outlined above. We follow the suggestion of Baum et al. [3] and use
regular refinement for subdivision of triangles. Newly introduced triangles are tested
again for subdivision until a maximum subdivision level has been reached or the
subdivision criterion is not fulfilled. To avoid linear interpolation artifacts due to
introduced T-vertices, these vertices are fixed with bisection refinement in regard to
the balance criterion of Baum et al. [3]: the subdivision level of the neighboring
elements should not differ more than one. If a triangle is subdivided, the radiosity
and residual texture of the parent triangle is copied down to the child triangles using
linear interpolation. Since subdivision is done before actually shooting, no reshooting
as for example in [10] is performed.
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Uniform TS tpp tr nt ne IT
[sec] [sec]

boxnm 256(4) 0.96 28.37 42 1365280 16
box 32(3) 0.5 0.92 42 20120 16
bus 32(3) 8.84 58.8 8798 4192282 16
museum 32(3) 8.78 89.98 13627 6534502 10
statue 32(3) 13.45 104 16028 7683931 8

Adaptive TS tpp tr nt ne IT
[sec] [sec]

bus 32(3) 8.84 72.26 9012 4259072 16
(2.14)

statue 32(3) 13.61 138.49 18288 8392967 8
(14.43)

statuenm 32(3) 27.43 164.94 18436 8440590 8
(33.0)

Table 2.1.: Performance for uniform and adaptive meshing for different scenes

2.5. Results
The presented method was implemented with C++, OpenGL and the Cg shad-
ing language from NVidia. Table 2.1 shows information about the examples used
throughout this paper. It lists the used radiosity texture size TS along with the
mipmap level used for shooting (in brackets), the time consumed by the radiosity
solver including the post-process and simple exposure tone mapping tr and the time
for setup and preprocessing (loading of scene geometry, calculation of tangent vec-
tors, initializing of the texture atlas etc.) tpp. Furthermore, the number of triangles
nt and the number of elements ne as well as the number of iterations IT (an itera-
tion includes shooting from all elements of a triangle) are listed. The subscript nm
denotes that normal mapping has been used. The time in brackets represents the
portion of tr required for adaptive subdivision of the mesh. Except of the statue
scene, all scenes have reached more than 88% convergence for the given number of
iterations. All measurements where taken on a Intel Core2 CPU with 2.13 GHz with
a Geforce 8800GTS with 640MB DDR3 Ram.

Performance analysis of the code showed that most time was consumed for rendering
the receiver triangles. This is evident since this function is dependent on the result
of the occlusion query to determine visibility. Additionally, setting the appropriate
parameters of the orthographic projection for each triangle requires context switches
of the fragment program. The performance of the current implementation is mainly
limited by the available texture memory of the GPU. Once too many textures have
to be maintained, texture memory thrashing can be noticed.

2.6. Conclusion and Future Work
We presented a GPU implementation of progressive radiosity for triangular meshes.
The rasterization of triangles is the major problem to overcome. We solve this by
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rendering the triangle itself and the outline of the triangle. The remaining arti-
facts are eliminated in a post-processing step or can be fixed during runtime with
a fragment shader. Furthermore, we demonstrated the inclusion of normal mapping
into the radiosity process, which yields more sophisticated results. Arbitrary light
distributions can also be simulated with the help of light distribution textures.

The ample use of occlusion queries for determining visibility and shadow boundaries
requires an elaborate algorithm to avoid stalling of the graphics pipeline. We are
currently optimizing our implementation in this regard. Currently only one texture
size is used for all triangles in the scene – independent from the actual size of a
triangle. However, for scenes consisting of objects with rather coarse and fine meshes,
this is suboptimal, since some triangles inevitable get undersampled or oversampled
respectively.

We aim to include general reflectance distributions by means of BRDFs, as published
by Sillion et al. [24], in our method. To allow for efficient reconstruction of the
BRDF during runtime we are investigating the approach by NVidia [31]. To account
for diffuse transmission the inclusion of a backward diffuse form factor [22], which
denotes the fraction of energy leaving a surface from its back side and impinging on
another surface, is considered.
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3. Geometry of Arbitrary Light
Distributions

Sophisticated simulation of lighting is crucial for plausible computer image genera-
tion. In many real time applications the simulation of light is restricted to directional,
point and spot light sources. This paper presents a method to simulate hemispheri-
cal and omnidirectional light sources with arbitrary light distributions by means of
light distribution textures (LDTs). These textures can be gained from photometric
data files provided by manufacturers of luminaires. The derivation of LDTs from
such files is presented. Reconstruction of the photometric solid from the LDT with
bilinear and bicubic filtering is also discussed.
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3.1. Introduction
Realistic simulation of lighting is necessary for plausible computer image generation.
Many physical plausible rendering systems, like Lightscape, Lightworks, or Radiance,
nowadays allow the inclusion of goniometric light sources1 which permits the accurate
simulation of real world luminaires. As pointed out by Albin and Peroche [1] such
simulations are needed in architectural design of galleries, offices (certain lighting
conditions have to be met by law), tunnels and so on. Furthermore the lighting
industry relies on the accurate simulation of illumination caused by a luminaire
before production of the luminaire actually starts.

However, in real time rendering direct illumination is still usually performed with
point-, directional- and spot lights and, as it seems, not much work has been carried
out in this area. In this paper we show the application of light distribution textures
– a concept we introduced in [15] in regard to radiosity – to real time rendering.

The remainder of this paper is structured as follows. Section 3.2 introduces the
necessary concepts and definitions. Related work in the field of computer graphics
is reviewed in Section 3.3. Light distribution textures are covered in Section 3.4.
Implementation details are provided in Section 3.5 and Section 3.6 presents results
achieved with our method. Finally the paper is concluded in Section 3.7.

3.2. Concepts and Definitions
In far-field photometry a light source is regarded as a point source for which the
inverse square law applies. The inverse square law states that the intensity of light
radiating from a point source is inversely proportional to the square of the distance
from the source. According to Ashdown [5] this assumption holds true for most
architectural luminaires if the distance from the luminaire to the measurement point
is at least five times the maximum width of the luminaire (five-times rule). Its
photometric distribution is usually expressed as a goniometric diagram (see Figure
3.1). These diagrams represent a planar slice through the light distribution and
therefore plot the relative intensity as a function of vertical angle specified in candela.
A typical goniometric diagram depicts two perpendicular slices through the intensity
distribution in polar coordinates, as noted by Cohen and Wallace [8]. Languénou and
Tellier [11] suggested a method for interpolating smoothly between those two slices.
However, for luminaires which exhibit a more complex light intensity distribution
(LID) further slices are necessary.

The 3-dimensional extension of a goniometric diagram is referred to as photometric
solid (see [4]). Such a photometric solid depicts the variation over vertical and
horizontal angles simultaneously (refer to Figure 3.2).

1A goniometric light source is one which can emit widely varying amounts of light energy in
different directions.
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Figure 3.1.: Goniometric Diagram of an asymmetri-
cal spotlight. The red and blue slice is also depicted
in the photometric solid in Figure 3.2.

Figure 3.2.: Photometric solid of
the asymmetrical spotlight.

The measurements of a source’s LID are provided by the manufacturer in terms of a
photometric file. Various photometric file formats exist, where – according to Ash-
down [5] – EULUMDAT is the de facto industry standard in Europe, while IESNA
LM-63 is used by North American lighting manufacturers. We will focus on EULUM-
DAT files in this paper, though LDT can also be gained from other photometric files.
Unfortunately it seems that no official specification on the EULUMDAT standard is
available on the web. However, an English translation can be found at [2]. In the
remainder of this paper we will use the nomenclature of the EULUMDAT specifica-
tion where mc is the number of C-Planes (vertical slices) and ng is the number of
measurements per C-Plane.

3.3. Related Work
Goniometric diagrams where first introduced to computer graphics by Verbeck and
Greenberg [14]. As already pointed out briefly in Section 3.2, Languénou and Tellier
[11] showed how missing values can be interpolated from two perpendicular slices of
the goniometric diagram, by projecting the direction vector onto the two planes and
then performing an elliptic interpolation between the two retrieved intensity values.
Zotti et al. [16] presented a method to approximate a luminaire with a combination of
at most two OpenGL lights. Their method did not exploit programmable hardware,
only OpenGL’s built in light sources and therefore had shortcomings with lights that
do not have spotlight characteristics. For global illumination renderer more work
on this topic is available. For example, Albin and Peroche [1] proposed a method
to reconstruct the light distribution from a goniometric diagram. To accomplish
this, a locally supported kernel is associated with every measurement to avoid some
problems with bilinear interpolation. They also cite more work in regard to global
illumination.
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Figure 3.3.: Light distribution texture of the luminaire from Figure 3.2. Texture coordinates
are given in parenthesis.

3.4. Light Distribution Textures
In this section we will first explain how an LDT can be derived from a light intensity
distribution and then describe the necessary calculations to access such a texture.

An LDT stores the light distribution of a luminaire and has dimension ng × mc.
The intensity values are read from the photometric file and normalized to the range
[0..1] by dividing through the maximum intensity Imax. Storing normalized values
allows to control the intensity of a light source independently (e.g. for dimming).
Figure 3.3 shows the LDT from the asymmetrical spotlight from Figure 3.2. In case
of a rotationally symmetric light distribution only a one-dimensional texture has to
be used. If the light distribution covers just one hemisphere, only the values from
that hemisphere have to be stored.

To access the LDT to retrieve the light intensity for a given direction d, the appro-
priate texture coordinates have to be calculated. For a rotationally symmetric LID
and a light source with reference system (n0, r0,u0)

2 the angle � between d and n0

has to be calculated and mapped to the range [0..1]. This is done by dividing � by �
for a omnidirectional light source or by �/2 for a hemispherical source. Consequently
the texture coordinates are given by

s =
arccos(n0 ⋅ d)

�
t = 0.5 (3.1)

For a luminaire with an asymmetric luminous flux distribution the issue is a little
bit catchier, because the luminaire has to be orientated correctly in the scene. This
is problematic, because – as noted by Ashdown [5] – various IESNA LM-series doc-
uments provide contradictory specifications on how the photometric solid is to be
orientated with respect to the physical outline of a luminaire. See [5] for a more in-
depth discussion on this topic. To obtain the correct C-plane for a non-rotationally
symmetric LID, d0 is projected orthogonally onto the plane (L,u0, r0). Afterwards
the angle between the projected vector and r0 is calculated. Finally, we have to eval-

2The subscript 0 is used to denote unit vectors.
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Figure 3.4.: Geometrical relationships which are necessary to sample the LDT for a given
light source L and a point P . The light distribution is shown as red curve.

uate if d is in the positive or negative halfspace in respect to the plane (L,n0, r0).
The t-coordinate is therefore given by

t =

{
1− 0.5'

� u0 ⋅ d ≤ 0
0.5'
� otherwise

(3.2)

where
' = arccos(r0 ⋅ ((d ⋅ r0)r0 + (d ⋅ u0)u0)) (3.3)

The geometric situation is illustrated in Figure 3.4. By setting the interpolation mode
of the texture to linear, missing values are automatically interpolated by graphics
hardware. The texture wrap mode in s-direction is set to GL_REPEAT to ensure
continuity between 0∘ and 360∘.

3.4.1. Filtering

Mapping the light distribution to a two-dimensional texture has the advantage that
two-dimensional filtering methods can be used to interpolate missing values.

Ashdown [3] points out that simple bilinear interpolation between the nearest mea-
surement angles is probably adequate for all practical applications. However, in
cases where only a small number of measurements is provided for a luminaire, inter-
polation artifacts may appear, since it gives only a piecewise linear approximation.
Further problems with bilinear interpolation arise if the measurements are not taken
regularly, as noted by Albin and Péroche [1]. In such cases higher-order interpo-
lation schemes can be used to improve the sampling of the LDT. Bicubic filtering
yields itself well to the task because (a) the interpolated result is smooth in all di-
rections and (b) it can be performed very fast on programmable graphics hardware.
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For instance, Bjorke [6] presented a method to perform bicubic filtering with the
Mitchell-Netravali kernel in the fragment shader. Sigg and Hadwiger [13] presented
a method to perform cubic b-spline filtering with linear texture fetches instead of
repeated nearest-neighbor sampling (as done by Bjorke). This reduces the number of
required texture samples and therefore increases the performance even further. Note
that in case of LDTs an interpolating filter is required, since the provided data is cer-
tain to be part of the photometric solid3. Results for reconstructing the photometric
solid with Catmull-Rom splines are provided in Section 3.6.

3.5. Implementation
The presented method can be easily included into existing surface reflection shaders
(like e.g. Blinn-Phong reflection model) by replacing the constant light intensity with
the intensity sampled from the LDT. The light intensity used for shading a surface
point is therefore given by

B = I ⋅ LDT (�, ') ⋅ 1

d2
(3.4)

where I is the absolute intensity of the light source, LDT (�, ') is the normalized
intensity sampled from the LDT and 1/d2 accounts for the inverse square law of light
(d being the distance from the lightsource). The sourcecode for accessing the LDT
in a fragment shader is given in Listing 1.

We implemented the dual paraboloid shadow mapping method of Brabec et al. (refer
to [7]) to show results in conjunction with shadows. It should be noted that any other
shadowing technique which supports omnidirectional or hemispherical light sources,
like Gerasimovs omnidirectional shadow mapping [10] or Shadow Volumes [9], can
be used too.

A floating point off-screen buffer is used to allow high dynamic range lighting. On this
buffer a tone mapping operation is performed to map the values to the displayable
output range [0..1]. For the images in this paper we used a simple exposure function
defined by y = 1− ex.

float3 d = normalize(lightPosition - pos);

// calculate s-coordinate
float cosi = -dot(lightNormal , d);
float phii = -min(acos(cosi) - PI, 0) / PI;

// calculate t-coordinate
float3 up = cross(lightNormal , lightRight);
float3 dn = normalize(dot(-d,lightRight)*lightRight +

dot(-d,up)*up);

3This is not the case for the cubic b-spline filtering method presented in [13]. However, the method
can be adopted to e.g. Catmull-Rom splines.



3.6. Results 41

Figure 3.5.: Roman god mercury lit by a rotationally symmetric high-bay luminaire (left).
The bilinear sampled light intensity from the LDT which is used for shading a surface point
(middle) compared with the result of bicubic interpolation (right). White means maximum in-
tensity whereas black is zero intensity. The goniometric diagram of the luminaire is depicted
in Figure 3.6.

float cosr = dot(lightRight , dn);
float W = 0.5*( acos(cosr)/PI);

float cosu = -dot(up , d);
float f = max(0, sign(cosu));
float texV = (1-W)*f + W*(1-f);

// sample light intensity from the LDT
lightIntensity = tex2D(LDT , float2(1-phii ,texV));

Listing 3.1: Cg fragment shader code for accessing a non-rotationally symmetric
omnidirectional light distribution texture

3.6. Results
Figure 3.5 shows a scene which is lit by a circular high-bay luminaire which exhibits
a winged emission pattern. Disco and effect lights can also be simulated with LDTs
(see Figure 3.8). It is worth mentioning that similar effects can be reached with
projective texture mapping (see [12]). However, in case of projective texture mapping
the texture is only projected onto the surface, it does not influence the lighting
calculation. Furthermore it is not possible to project the texture onto the whole
halfspace at once. Figure 3.7 shows a room lit by four light sources. For the luminaire
at the ceiling a compact downlight with extremely wide light distribution was used.
For the lamp on the wall rotationally symmetric spotlights with a slightly anomalous
distribution were used, and an asymmetrical light distribution of a downlight was
assigned to the desk lamp. Average rendering times over 300 frames for different
scenes on an Intel Core2 with 2.13 GHz, 3.5 GB RAM and a Geforce 8800GTS
with 640MB RAM are given in Table 3.1. The table states the number of triangles
nt in the scene as well as the number of light sources nl. The average rendering
time of a frame if standard point light sources are used is denoted as ts and the
average rendering time with asymmetrical light distributions by means of bilinear
interpolated LDTs is designated as tg. The increase in rendering time is given in the
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nt nl ts[ms] tg[ms] inc[%]

96
1 2.106 2.161 2.61
4 4.446 4.692 5.16
7 7.300 7.465 2.26

1760
1 1.603 1.686 5.18
4 3.423 3.729 8.94
7 4.781 5.374 12.4

14764
1 2.292 2.473 7.9
4 5.031 5.619 11.69
7 7.906 8.863 12.1

114445
1 4.435 4.588 3.45
4 10.051 10.322 2.7
7 16.601 17.261 3.98

Table 3.1.: Average rendering times

Figure 3.6.: Reconstruction of the photometric solid from the rotationally symmetric light
distribution of the luminaire used in Figure 3.5.

column inc. In both cases the same render settings4 were used, only the shader for
calculating the lighting was interchanged. As shown, the increase in rendering time
is tolerable and can be further reduced if only symmetrical light distributions are
used.

To compare the quality of the reconstruction of the photometric solid from an LDT,
we implemented Bjorkes [6] bicubic filtering method, because it allowed us to easily
try different cubic splines by changing the filter weights in the look-up texture. To
compare the results of various interpolation methods, the LDT was rendered to a
five-times larger (floating point) texture. Afterward the contents of the texture were
obtained and used for geometric reconstruction of the photometric solid. Currently
the best results were achieved with Catmull-Rom splines. Figure 3.6 compares the
results for a rotationally symmetric light distribution. Red points depict data present
in the photometric data, which were omitted in the right half. The blue line shows
bicubic interpolation with Catmull-Rom splines and the black dashed line linear

4This includes accumulating the contribution of each light source in a frame buffer object and
subsequent tone mapping.
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Figure 3.7.: A room lit by four goniometric light sources. Note the light distribution at the
back wall, which does show a slightly anomalous spot light characteristic.

interpolation. Bilinear interpolation works well as long as the intensity does not
change much over angular distance. Note, e.g. the bright white stripe in Figure 3.5
right, which corresponds to the intensity maximum at about 35∘ in the goniometric
diagram. Such artifacts are not visible with bicubic interpolation since the derivatives
are continuous over the photometric solid.

3.7. Conclusions
In this paper we showed the application of light distribution textures to real time
rendering. LDTs allow the fast rendering of hemispherical as well as omnidirectional
light sources with directionally dependent light distribution. They can easily be
incorporated into existing surface reflection shaders. It should be stressed that in this
paper we did not focus on physical plausibility. If this is desired, factors like e.g. the
dependency of the luminous flux from the ambient temperature have to be considered.
In addition LDTs allow the simulation of various effect lights. Time measurements
have shown that the increase in rendering time is acceptable. However, there are
still some code optimizations possible, which will result in further performance gains.
Finally, different interpolation methods for reconstruction of the photometric solid
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Figure 3.8.: LDTs can also be used to simulate various light effects, like disco lights. The
white dot represents the position of the light source.

were discussed. As possible future work the viability of Albin and Péroche’s method
[1] to real time rendering should be investigated. We are currently experimenting
with different kind of bicubic reconstruction filters. To compare the results we are
using the Hausdorff Distance Metric, as suggested by [4]. It may be also from interest
to compare those results with the ones achieved if using the method of Albin and
Péroche.
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4. An Extended GPU Radiosity Solver
Including Diffuse and Specular
Reflectance and Transmission

In this paper we present an extended GPU progressive radiosity solver which in-
tegrates ideal diffuse as well as specular transmittance and reflection. The solver
is capable to handle multiple specular reflections with correct mirror-object-mirror
occlusions. The use of graphics hardware allows to consider attenuation of radiation
due to reflections and/or transmissions on a per pixel basis, enabling us to han-
dle multiple specular triangles with different reflection coefficients at once. Alpha
masks are used to replace complex geometry in certain cases to reduce computation
times. Furthermore, the inclusion of ambient overshooting into the radiosity solver
is discussed.
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4.1. Introduction
The problem of light interreflection for realistic image synthesis has always been a
major issue in the field of computer graphics. Various algorithms to solve the global
illumination problem have been proposed over the years. The radiosity method –
which is based on the theory of radiative heat transfer – was introduced to the
graphics community by Goral et al. [10].

In its original formulation the algorithm does not allow occluders and required time
and storage costs of O(n2) (where n is the number of surfaces) and therefore was im-
practical for scenes with higher complexity. Cohen and Greenberg [6] introduced the
hemicube method to include occluders into the radiosity process. Performance was
greatly improved by using progressive refinement [5] or various hierarchical radiosity
techniques (e.g. [4, 12]).

Whereas these methods try to reduce the computational complexity, overshooting
algorithms have been proposed to speed up the convergence of the radiosity compu-
tation itself. In contrast to standard progressive radiosity where shooting is always
performed from the patch with the highest unshot radiosity, overshooting methods
estimate the radiosity that will be reflected back later on and shoot it together with
the actual unshot radiosity. Several overshooting techniques have been proposed,
most notable: positive overshooting [25], super-shoot-gather [11] and ambient over-
shooting [8].

The introduction of programmable graphics hardware has fostered research in hard-
ware accelerated global illumination. Nielsen and Christensen [20] accelerated the
hemicube method with the help of hardware texture mapping. Floating point tex-
tures to store the result of the radiosity computation where first utilized by Carr et
al. [3]. The first radiosity solver which completely works on a GPU was proposed by
Coombe et al. [7]. However, the algorithm was restricted to planar quadrilaterals.
In [29] we described a GPU radiosity solver for triangular meshes which was based
on the work of Coombe et. al.

Furthermore, classical radiosity assumed that all surfaces exhibit ideal diffuse re-
flection characteristics. To include abitrary reflectance distributions Immel et al.
[13] placed an imaginary discretized cube around a vertex to store the incoming
light directions. Although this could be implemented on graphics hardware using
cube maps, storage requirements to achieve enough accuracy would be too high for
more complex scenes. To avoid these memory requirements Rushmeier and Torrance
[24] propagate the energy immediately until it reaches a diffuse only surface. They
only considered ideal diffuse/specular reflectance and transmittance and no two ideal
specular surfaces were allowed to see each other. For planar specular reflecting sur-
faces they mirror the environment across the surface and propagate the light from
the shooter to the virtual surfaces. However, instead of reflecting the whole envi-
ronment, one can simply reflect the shooter around the surface, as noted by Sillion
et al. [26]. Li and Yang [17] use a precomputed reflection tree to handle multiple
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reflections. The root is the real world and for each mirror (either in the real or a
virtual world) a virtual world is constructed and inserted into the reflection tree.
The process stops if the estimated form-factor between the real and a virtual world
is lower than a certain threshold.

The main contribution of this paper is the description of an extended radiosity solver
which is capable of integrating diffuse/specular reflections and transmissions and
which performs all calculations on graphics hardware. We propose a unified data
structure and rendering path which can handle interreflections and transmissions
in arbitrary order. Furthermore we use texture maps with alpha masks to reduce
geometric complexity and show that ambient overshooting can easily be included
into the process.

The remainder of this paper is structured as follows. In Section 4.2 we will briefly
review for the sake of completeness the algorithm for diffuse environments. In Section
4.3 the inclusion of diffuse transmitting surfaces as well as specular reflection and
transmission is described. Section 4.3.4 and 4.3.5 describe the inclusion of alpha
maps and ambient overshooting. Results are discussed in Section 4.4 and the paper
is concluded in Section 4.5. The following nomenclature will be used: The letter �
will be used for reflectance and the letter � for transmittance. The subscript d stands
for diffuse and s for specular. � will denote the absorptance. To ensure conservation
of energy �d + �s + �d + �s + � must sum to unity. Vectors are written in bold face.

4.2. Algorithm Outline
In this section we outline an improved version of the radiosity algorithm, which was
proposed in [29], for diffuse reflective surfaces only.

For each triangle two power-of-two 32 bit RGBA floating point textures are main-
tained. One stores the radiosity and the other the residual energy. The alpha channel
is used to mask those texels which are occupied by the triangle. Using a one-fits-all
texture size for the radiosity and residual textures, as done in [29], proved suboptimal
for scenes which consists of objects with coarse and fine meshes. Coarse meshes got
undersampled whereas fine meshes got oversampled. To circumvent this problem it
is preferable to assign each object in the scene – based on its coarseness – an indi-
vidual texture size 1. All textures are stored in larger lightmaps to reduce texture
switching during the radiosity calculation. To allow for mipmapping each lightmap
only contains textures of a certain power-of-two size.

After this preprocessing step the radiosity solver starts. At the beginning of each
radiosity iteration the next shooter is selected. This is accomplished by constructing
a mipmap pyramid for each lightmap and reading back the averaged residual energies.

1Varying the texture size over triangles of the same object can lead to interpolation artifacts
between boundaries of triangles.



50 4. An Extended GPU Radiosity Solver

It is important to consider only texels which are occupied by the triangle (� = 0)
during this calculation. The values are read back and the triangle with the highest
unshot energy is the next shooter. During this process an ambient radiosity term
(see [5]) can also be calculated with negligible computational cost. This triangle
is rendered orthographically into a framebuffer with three color attachments. The
color attachments hold the interpolated normals, the world positions and, if the
triangle has a texture assigned, a textured version of the triangle. This allows us to
incorporate colors on a per-texel basis instead of using a constant color for the whole
triangle.

Afterwards a visibility texture from the viewpoint of the shooter (the shooter infor-
mation is sampled from the afore mentioned three textures) is created by using a
stereographic projection (as described in [7, 2, 29]. During the rendering an occlu-
sion query is issued for each triangle. Each triangle that might have received energy
(this can be determined with the afore mentioned occlusion query) is rendered or-
thographically to a framebuffer and the texels are back-projected into the shooters
viewpoint. If a certain texel of a receiver is deemed visible from the viewpoint of the
shooter, that is, the depth stored in the visibility texture matches the depth of the
texel, then the form-factor is evaluated in a fragment shader.

We use the disc approximation to the differential form factor, as proposed by Wallace
et al. [27], which is given by

FdAi,Aj (= Fi,j) = Aj

k∑
i=1

cos(�i) cos(�j)

d2� +
Aj
k

(4.1)

where A is the area of a surface and k the number of sampling points on Aj . The
angles �i and �j relate the normal of patch i respectively patch j with the vector
joining i and j and d is the distance between the two patches. The new radiosity
Bnew and residual energy Rnew of a texel with color c is then given by

Bnew = Bold + E ⋅ Fi,j ⋅ Vi,j ⋅ c ⋅ (1− �d) (4.2)
Rnew = Rold + E ⋅ Fi,j ⋅ Vi,j ⋅ c ⋅ �d (4.3)

where E is the emission of the shooting patch and Vi,j is either 0 or 1 depending if
surface i and j are visible to each other or not. �d is the diffuse reflectance and c the
color of the incoming light. After shooting from each texel of the shooting triangle
the residual texture of the shooter is set to zero and the next iteration starts. For a
more thorough description see [7] or [29].
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4.3. Extensions
In this section we describe the inclusion of diffuse transmittance as well as ideal
specular transmittance and reflection into the above outlined GPU radiosity solver.
Furthermore the use of masking and ambient overshooting will be discussed.

4.3.1. Diffuse Transmission

For a scene with N surfaces the radiosity of a diffuse transmissive element n is given
by

Bn = En + �n,d

N∑
m=1

BmFn,m + �n,d

N∑
m=1

BmTn,m (4.4)

where En is the self-emission of n and Tn,m is the so called backward diffuse form
factor, which denotes the fraction of diffuse energy leaving n from its back side and
impinging on surface m. Tn,m can be computed the same way as (the forward diffuse
form factor) Fn,m, but this time the hemisphere is placed at the back side of the
current shooter. A derivation of Equation 4.4 with respect to surface intensities can
be found in [24].

To avoid storing the transmittance part, which is received by an element in a sepa-
rate texture, the residual texture stores the radiosity sum (cf. Equation 4.4) which
is available for diffuse reflectance and transmission. If a diffuse transmissive trian-
gle is selected as next shooter, shooting is performed twice. Once in direction of
the normal of the shooter (front side) by multiplying the sampled intensity from
the residual texture with �d/(�d + �d) to retrieve the amount available for diffuse
reflection and once to the back side by multiplying the intensity with �d/(�d + �d)
respectively. Since such triangles can receive energy from both sides, the normals of
the receiving triangle t are inverted if t.normal ⋅ sℎooter.normal > 0 for the cal-
culation of the impinging energy. The lamp shade in Figure 4.6 was rendered with
diffuse transmissive triangles.

4.3.2. Specular Reflection

Specular reflections are handled in two steps. In what follows, we will first focus
on the view-independent component of the specular reflection and afterwards the
view-dependent part will be discussed.

As described by Rushmeier and Torrance [24] a specularly reflecting surface can be
treated as a window which restricts the view into the virtual world behind the mirror.
Therefore the environment across the mirror plane is reflected before calculating the
window form factor with the hemicube method. Sillion et al. [26] improved the
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concept by reflecting the shooting patch across the mirror surface instead of the whole
environment (which is valid if the mirror is planar). We will follow the approach by
Sillion et al. and reflect the position and normal of the shooter.

As already mentioned in the introduction there are two ways to include specular
reflectance into a radiosity solution. Since the incoming direction must be known for
specular reflectance either this information has to be stored in a data structure like
the global cube as proposed by Immel et al. [13] or the energy must be propagated
immediately. To avoid the memory requirements of the former we use the second
approach and only store diffuse intensities in textures, whereas specular intensities
are traced instantly until a purely diffuse surface is reached. In case of specular
reflectance the radiation Bj arriving at a surface j from a surface i after n specular
reflections at mirror surfaces m is given by

Bj = Bi ⋅ (�1 ⋅ �2 ⋅ ... ⋅ �n) ⋅ FdAi(m1,m2,...,mn)Aj (4.5)

where �1...�n are the specular reflectances of the mirror surfaces. This is actually
the diffuse form factor multiplied by the specular reflectances, since the radiation is
attenuated by every reflection (see e.g. [19] for a precise description). The nomen-
clature i(m) – as commonly found in radiative heat transfer literature – designates
the mirror image of surface i in mirror m. It is worth mentioning that the law of
reciprocity holds also true in case of planar specularly reflecting surfaces (see [19] for
a proof).

To handle multiple reflections the algorithm proceeds recursively and uses a reflection
tree as data structure. Unlike [17] the reflection tree is calculated dynamically and
not in a preprocessing step. The recursive algorithm starts if during rendering of the
receivers – as described in Section 4.2 – at least one specularly reflecting triangle is
encountered. If there is more than one triangle then they are grouped according to
their mirror-plane2 and for every group a node is inserted into the tree. Figure 4.1
shows a scene with two mirror surfaces and Figure 4.2 the corresponding reflection
tree.

A node of the tree stores – beside pointers to the children and parent – the mirror
plane, the specular reflecting triangles contained in this plane and the normal and
position of the already, around the mirror plane, reflected shooter as well as a list
of triangles which received light. For each node in the reflection tree the following
steps are performed.

First, an appropriate projection for rendering of the visibility texture from the view-
point of the reflected shooter is constructed. Instead of using a hemispherical pro-
jection a perspective projection, where the eye is located at the shooter position and

2All surfaces which lie in the same plane can be handled at once since they have the same virtual
shooter position.
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Figure 4.1.: A room with two mirrors m1 and m2. The shooter is located at position S. For
the second order reflection from point S(m1,m2) mirror m2 is partially occluded by o1 (for
a better overview the room itself is not considered as an occluder). Only surfaces which
received light during shooting from S(m1) may occludem2. Furthermorem2 is only partially
visible through m1.

Figure 4.2.: The corresponding reflection tree for the example in Figure 4.1. For each node
the shooter position, the reflecting surfaces and the possible occluders are given.
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Figure 4.3.: The solid angle subtended by the view frustum is used to calculate an estimate
of the unoccluded form factor. The field-of-view angle is chosen in a way such that all
reflecting triangles (shown in gray) within the same plane are inside the frustum.

is pointing toward the barycenter of the specular triangles, is used. The field of view
angle is set to the minimal angle such that all triangles are projected onto the image
plane. This has the advantage that the world seen by the mirror occupies a fairly
large portion of the visibility texture. In case of a hemispherical projection the areas
can get very small, especially at the perimeter or after multiple reflections.

It is clear that the energy transferred through a sequence of reflections decreases
steadily. To avoid spending computation time on nodes which would only add in-
significant detail to the final solution an upper bound of the form factor for the
current node is estimated. In the work of Hanrahan et al. [12] the unoccluded form
factor is estimated by calculating the solid angle subtended by a sphere enclosing
the area of the receiver, whereas in [27] a disc with cross sectional area equal to the
area of the receiver is used. In our case we do not know in advance which surfaces
will receive energy and aside from that the receivers are not handled separately (each
node can distribute light to several surfaces). Therefore the solid angle subtended by
the view frustum of the above defined projection is used. Thus, in case of a square
frustum the form factor estimate Fe is given by
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Fe =
cos(Θ)

�
(4 ⋅ arcsin(sin2(

�

2
)) (4.6)

where � is the dihedral angle between opposite faces of the view frustum, or to
put otherwise, � corresponds to the field-of-view angle. Θ is the angle between the
normal of the shooter patch and the view direction. Figure 4.3 depicts the concept
graphically. If this estimate is below a certain threshold the recursion is stopped at
this point. Otherwise the visibility texture is constructed.

In general, the stencil buffer is used to mask those areas which are visible through the
mirrors. If multiple specular reflections and mirror-object-mirror occlusions are not
considered it is enough to render the mirror triangles with the stencil test enabled.
Otherwise the problem is more involved, since occlusions can occur or a mirror is
only partially visible through another mirror (e.g. in Figure 4.1 mirror m2 is only
partially visible through m1).

In this case the stencil operation is set to increase, and the mirror triangles of the
current node are rendered. Then all mirror triangles of all preceding nodes are
rendered, whereby in each step from a node ncℎild to nparent upwards in the tree
the current modelview matrix is post-multiplied with the reflection matrix stored in
the node ncℎild, to reflect the triangles to the appropriate position. Since reflection
coefficients and colors can vary from triangle to triangle (or over the surface of a single
triangle) multiplicative blending is used to gain the attenuation factors and colors on
a per-texel basis. To account for mirror-object-mirror occlusions all possible occluder
surfaces contained in preceding nodes are also rendered3. Because possible occluder
triangles which are behind the mirrors after reflection actually do not occlude the
view onto the mirror, the mirror plane of ncℎild is used as clipping plane for the
possible occluders in the node nparent to ensure correct visibility. For example, in
Figure 4.1 the surface o1 occludes mirror m2 and must therefore be reflected at m2.
Furthermore, since a parent node can contain occluder triangles which are also part
of the mirror triangles of the actual node, a small offset has to be added to the
mirror plane to prevent rendering of these triangles. E.g. when processing node
{S(m2),m2}, a small offset is added to the mirror plane defined by m2 to prevent
rendering of m2 which is part of the occluder triangles of the root node. Rendering
of the occluders resets the stencil value to zero at the corresponding positions.

In the next step all potential receivers are rendered only to those areas where the
value in the stencil buffer equals the current recursion depth. This is necessary since
a mirror need not be contained as a whole in another’s mirror visibility window as
mentioned above. To clip away the geometry behind the mirror plane either an
additional clipping plane has to be specified or the near view plane must be aligned
with the mirror plane using the oblique near-plane clipping technique as described

3Occlusions which occur between a mirror and a diffuse receiver are accounted for with the visibility
texture. Figure 4.5 shows an example where a mirror-object-mirror occlusion occurs.
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in [16]. The latter has the advantage that there is no additional clipping plane
necessary, but it reduces the depth buffer precision depending on the alignment. We
therefore preferred the former technique.

The perspective projection also increases the amount of geometry which can instantly
be culled away. Before rendering the individual triangles view frustum culling with
occlusion queries is performed, since objects inside the view frustum need not nec-
essarily be seen by a mirror (that is, would not pass the stencil test). All triangles
of objects which passed the occlusion query are rendered into the visibility texture.
Again, an occlusion query is issued for each triangle as described in Section 4.2.

If a diffusely reflecting or transmissive surface is deemed visible (the depth stored in
the visibility buffer equals the depth of the currently examined fragment) then the
radiosity and residual texture are updated with

Bnew = Bold + E ⋅ Fi(m1,..,mn)j ⋅ Vi,j ⋅ c ⋅ c
∗ ⋅ �∗s ⋅ � (4.7)

Rnew = Rold + E ⋅ Fi(m1,..,mn)j ⋅ Vi,j ⋅ c ⋅ c
∗ ⋅ �∗s ⋅ � (4.8)

where � = (�d + �d) and �∗s is the multiplied specular reflectance sampled from
the visibility buffer and c∗ are the multiplied color values respectively. All of these
triangles are inserted into the possible occluder list of the current node. It is clear
that only triangles which received light can occlude a specular reflecting surface in
the next recursion step. If specular surfaces are encountered, these are grouped again
according to their mirror plane and a child node for each group is inserted into the
reflection tree. Listing 4.1 and 4.2 summarize this steps.

specularRecursion(Node n) {
set perspective projection;
f = estimate unoccluded form factor;
if (f < threshold) return;
renderVisibilityTexture (&n);
for (each receiver r) {
update radiosity and residual texture of r;
add r to possible occluder list of n;
if (r == specular reflective)
add r to specular surface list L;

}
group all surfaces s in L;
for (each group g) {
add a child nc to n;
specularRecursion(nc);

}
}

Listing 4.1: Pseudocode for handling specular reflections
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renderVisibilityTexture(Node *n) {
stencil operation = increase;
render specular surfaces of n;
enable multiplicative blending;
push modelview matrix mv;
Node *f = n;
while (f->parent != NULL) {

multiply mv with f->reflectionMatrix;
f = f->parent;
render specular surfaces of f;

}
pop mv;
disable blending;
stencil operation = zero;
push mv;
f = n;
while (f->parent != NULL) {

setClippingPlane(f->mirrorPlane);
multiply mv with f->reflectionMatrix;
f = f->parent;
render occluder surfaces of f;

}
pop mv;
stencil operation = keep;
renderScene ();

}

Listing 4.2: Pseudocode for rendering the visibility texture.

To render the view-dependent mirror reflections in real time, a recursive texture-
based approach is used. Planar recursive reflections have usually been rendered
either by using texture mapping [18] or the stencil buffer. The basic idea is to render
the reflected scene into a texture and apply this map onto the reflective polygon. Yet,
as high resolutions may be necessary to capture reflections accurately and a texture
map is assigned to each polygon, memory requirements may become quite large.
Nielsen and Christensen [21] overcome these memory requirements by immediately
discontinuing rendering of the scene if a reflecting polygon is met. In this case the
corresponding reflection map is created, applied to the reflecting polygon and then
the rendering task is continued. This process can be repeated recursively.

In this work we follow this approach since texture memory requirements are already
very large for storing the radiosity information. However, instead of calculating
the reflection map separately for each reflector, we group them again in regard to
their mirror plane. This way multiple triangles can be handled at once. The same
reflection tree data structure as above is used. Naturally this time the eye position
is reflected around the mirror plane instead of the shooter position. The recursion
starts if specular reflecting triangles are visible from the eye point and the recursion
stops if either a maximum number of recursions is reached or the mirror size in the
final image is below a certain threshold. For each recursion depth one reflection map
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with its corresponding depth buffer is created. This is necessary since the contents
of a reflection map of a certain recursion level must not be discarded until all child
nodes are processed. If such a reflection map for a specific level has to be created
the corresponding texture map and depth buffer are bound to a framebuffer object
and the scene is rendered from the reflected eye position.

4.3.3. Specular Transmission

Inclusion of specular transmission is more demanding since refraction can occur.
Rushmeier and Torrance [24] neglected the effect of refraction at a transmissive
surface. In this case the shooter can remain at its position and the transmissive
surface acts as window restricting the view of the environment. Leiss et al. [15]
considered refractions only if the caused bending is small. To determine the receiving
vertex, rays are shot through the transmitting patch and the hit is assigned to the
nearest vertex. Since in presence of refraction it is not possible to calculate a single
virtual shooter position valid for a whole triangle (in fact the position would describe
a caustic surface, as discussed in [9]). Therefore the effect of refraction is neglected
in the current implementation, which is valid if the interface is a thin transmitting
plate, such as a window [24].

Transmissive surfaces can easily be included into the reflection tree algorithm de-
scribed in Section 4.3.2. Instead of reflecting the shooter position, the shooter stays
where it is and instead of the �s, �s has to be used. Furthermore, the modelview
matrix for reflecting surfaces is not modified at a transmissive node. Using the same
rendering path and data structure has the advantage that reflective and transmissive
surface can interact with each other in any arbitrary way. If a surface is specularly
reflecting and transmitting two individual nodes are inserted into the reflection tree.
Additionally transmitting surfaces are inserted into a BSP-Tree to guarantee correct
visibility.

4.3.4. Masking

For masking texture maps with an alpha channel which determine which parts of
a triangle are fully transparent (� = 0) and which ones are opaque (� > 0) are
used. The main objective is to speed up the radiosity process by replacing complex
geometry with a simple proxy object. They can be used for objects which contain
fine geometric details (e.g. fences, grids) and would therefore require complex trian-
gulations. For example, the jalousies in Figure 4.6 were rendered with such an alpha
mask.

To include such masks in the above algorithm some minor modifications are nec-
essary. First, texels with an alpha value of zero do not contribute to the area of
the triangle and therefore the area of the triangle must be corrected with respect to
those texels. Therefore a triangle with a mask is rendered twice during initialization
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of the lightmaps. Once the complete number of occupied texels nc is retrieved from
an occlusion query and once only texels which pass an alpha test, which discards
all texels with an alpha value of zero, are counted (no). The revised area Ar is
then given by the multiplication of the original triangle area A with no/nc. The
area of a single texel is thus estimated with Ar/no (if a triangle has no alpha mask
the texel area is given by A/nc). Second, during rendering of the visibility texture
texels with an alpha value of zero have to be discarded to ensure correct visibility.
Third, to guarantee correct back-to-front rendering each triangle with an alpha mask
is inserted into a BSP-Tree.

Finally, it should be noted that the resolution of the radiosity/residual texture of a
triangle should match the resolution of the texture used as mask. Otherwise artifacts
will appear since the illumination of the triangle does not correctly correspond to its
visibility information.

4.3.5. Overshooting

Overshooting techniques aim to speed up the convergence of the radiosity compu-
tation. From the techniques mentioned in the introduction ambient overshooting is
the most applicable one for our GPU radiosity solver. The former two would require
patch-to-patch form factors by the time of shooting and – even less advantageous
– additional storage to record the pre-shot radiosity from a patch i to a patch j.
On the other hand, ambient overshooting utilizes the ambient term, which in our
case is already calculated during the next shooter selection and for display purposes.
Furthermore, no additional memory is required and, as shown by Gortler et al. [11],
ambient overshooting and super-shot-gather performed equally well in terms of con-
vergence.

To include ambient overshooting in the proposed algorithm two small changes are
required. First, instead of using the patch which maximizes ΔBiAi for shooting as in
traditional progressive radiosity, the patch which maximizes (ΔBi + ΔB′i)Ai, where
ΔB′i, according to Feda and Purgathofer [8], is given by

ΔB′i = min(�id ⋅ ambient,
n∑
j=1

ΔBj ⋅Aj
Ai

−ΔBi) (4.9)

This equation ensures that the ambient term never becomes negative (if it would, the
solution would not converge, as shown by Feda and Purgathofer [8]). Second, after
shooting the unshot radiosity, patch i must be set to −ΔB′i. Since floating point
textures are used storage of negative values is no problem. This negative value should
tend back towards zero if the estimate was good. However, if ΔB′i was overestimated
a negative amount must be shot back into the environment. Ambient overshooting
led to a decrease in rendering time of about 10 to 40 percent, depending on scene
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Scene nt ntexels ns tspr tspec tsp+ao
r tℎcr tℎc+ao

r

[sec] [sec] [sec] [sec] [%] [%] [%]
Cornell boxℎigℎ 259 126782 361 4.97 0 -38.81 0.01 -33.72
Cornell boxlow 29666 89 2.39 0 -37.73 3.40 -36.75
living roomℎigℎ 3821 2952096 4106 192.94 41.73 -37.86 -5.64 -37.18
living roomlow 1401806 1137 60.32 13.22 -12.83 -13.14 -24.89
bedroomℎigℎ 12355 2054225 1049 216.62 59.54 -22.80 8,04 -15.03
bedroomlow 381230 269 67.50 18.19 -19.12 6.07 -11.74
teahouseℎigℎ 4442 2941550 3621 415.59 212.95 -32.24 21.92 -10.21
teahouselow 690870 916 127.75 65.00 -32.16 -22.14 -42.01

Table 4.1.: Performance of the presented algorithm. The columns show the number of
triangles nt, the number of texels ntexels along with the number of shots ns and the time
needed by the radiosity solver tr to reach 90% convergence. In addition the increase/de-
crease in rendering time with ambient overshooting (ao) for sterographic projection (sp) and
the hemicube (ℎc) is given.

geometry and reflectivity (see Table 4.1).

4.4. Results and Discussion
We implemented the described methods with C++, OpenGL and the Cg shading
language. Table 4.1 shows information about the examples which have been used
in this paper. All time measurements were performed on an Intel Core2 CPU with
2.13 GHz, 3.5 GB RAM with a Geforce 8800GTS with 640MB DDR3 Ram. Each
scene was evaluated twice, once with higher resolution textures (high) and once
with reduced resolution (low). A 512x512 texture was used for the hemicube and
a 1024x1024 visibility texture for the stereographic projection. Shooting was per-
formed each time from the third mipmap level. By always shooting from the same
mipmap level regardless of the texture size of a current shooter and by assigning
lower resolution maps to triangles with smaller area has the benefit that the number
of shootings corresponds naturally to the size of the triangle. Furthermore, lower
resolution textures reduce the number of shootings per map, simultaneously the en-
ergy per shooting iteration is increased accordingly, leading to an overall decrease in
shooting steps which are necessary to reach the same convergence.

In Figure 4.5 one diffuse area light source is positioned slightly in back of the woman,
whereas Figure 4.6 uses a goniometric light source for the floor lamp and diffuse area
light for a streetlamp outside the room. Goniometric lightsources are rendered with
bicubic filtered light distribution textures, as described in [28]. The scene in Figure
4.7 has two diffuse area light sources placed at the ceiling and outside of the room.
To map the high dynamic range information to the output range of [0..1] a simple
exposure function was used for Figure 4.5 and 4.7. In case of Figure 4.6 the global
tone mapping operator from Reinhard [22] was applied.

To compare the quality of the results achieved with the stereographic projection,
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Figure 4.4.: Comparison between the hemicube (left) and stereographic projection (right).
Since the triangulation of the occluder is too course the shadow boundary is distorted in
case of the stereographic projection.

we also implemented the hemicube method for rendering of the visibility texture.
Although the stereographic projection requires rendering of the scene only once,
instead of five times when using a hemicube, it has some serious drawbacks due
to the fact that only vertices are affected by the projection. This can result in
wrong visibility information (e.g. areas are not recognized as visible) especially
if the triangles are large or the light sources are near to an object. Figure 4.4
compares the results gained with the hemicube and the stereographic projection by
means of a simple test scene. This is the reason why in some cases the hemicube
performed better because less shootings were necessary to reach 90% convergence
(e.g. in the teahouse scene). A possibility to improve the result would be to use
spherical rasterization as described in [14]. As they note, a pixel belongs to the
spherical projection if it is above all three planes defined by the edges of the triangle
and the origin. However, Kautz et al. [14] only used a low resolution visibility mask,
so they could speed up the process by precomputing a lookup table of bitmasks for
a discrete set of planes. In our case the spherical rasterization would be too time
consuming. In this sense a programmable rasterization stage would be desirable.

It is worth mentioning that rendering the receivers is the most time consuming
function, since it is invoked for each visible receiver for each shooting of light. Per-
formance analysis showed that the call to cgGLSetStateMatrixParameter – to setup
the camera for orthographic rendering of the triangles – uses most of the time. The
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problem seems to be an internal glGetDoublev call which stalls the pipeline. We
found that the best option is to access the modelview projection matrix directly in
the shader via the glstate directive from Cg.

In our discussion we implicitly assumed that all surfaces are gray emitters where
neither � nor � depends on wavelength (or incoming direction). However, it is clear
that the method can easily be extended to allow for separate radiative properties for
each color channel.

It must be pointed out that grouping triangles according to common planes can cause
some trouble if the field-of-view angle for the perspective projection approaches 180
degree. Imagine a hallway with several mirrors hanging on the same wall. In such a
scenario all mirrors would be in the same plane, spanning a wide distance. If this is
the case it is preferable to split such a node into several ones with smaller viewing
angles, otherwise artifacts will appear due to distorted visibility information.

4.5. Conclusion
An extended radiosity solver which accounts for both diffuse and specular reflec-
tion and transmission has been presented. Whereas diffuse intensities are stored in
textures, specular intensities are traced immediately until they reach a diffuse only
surface. The solver is capable to handle multiple specular reflections with correct
mirror-object-mirror occlusions. Transmissions are handled within the same recur-
sive rendering path and data structure. To accomplish this, a data structure called
a reflection tree was used. The use of hardware texture mapping easily allows to
consider attenuation and color bleeding on a per-texel basis.

Furthermore the inclusion of ambient overshooting and masking, to speed up the
radiosity process, was discussed. The former tries to improve the convergence of the
radiosity computation, whereas the latter tries to reduce the geometric complexity.
Images of several scenes showed results which were achieved with our implementation.

The stereographic projection can lead to some severe artifacts if the triangulation of
the scene is not fine enough. The hemicube circumvents these problems at cost of
higher computation times. In this sense a fast heuristic to decide if the error by the
hemispherical projection is negligible or not would be useful.

To consider participating media Rushmeier and Torrance [23] used the so-called zonal
method. By altering the form factors of the zonal method it can also be extended
to specular surfaces as described in [1]. We consider to include participating media
into the GPU radiosity solver since the zonal method may be well adoptable to 3D
textures.
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Figure 4.5.: A room with two mirrors. One lightsource is pointing towards the mirror in the
corner. The woman partially occludes the light path from the mirror in the corner to the
other one, resulting in a partly occluded 2nd order reflection. Furthermore, only the part
from the wall mounted mirror which is seen through the corner mirror casts a 2nd order
reflection. The image on the bottom shows the 1st and 2nd order reflections in red and
green respectively for the shooting steps from the light source.
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Figure 4.6.: For the lamp shade diffuse transmitting surfaces where used. One goniometric
light source was placed inside the lamp and one standard diffuse area light outside the
room. The window and glas table are specularly transmitting. The colors for the lighting
calculations are sampled from the texture. The jalousies where modeled as simple planes
with an alpha mask.
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Figure 4.7.: A japanese teahouse with one light source located at the ceiling and another
higher intensity source outside. The doors have specular transmissive windows with a
high absorptance rate. The floor is specular reflective and behind the wallsystem a highly
reflective mirror was placed. Alpha masking was used for the grids on the doors and the
table board . The image on the bottom shows transmitted light in green and reflected light
in red for the shooting steps of the lightsource outside.
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A. Force Directed Embedding of
Hierarchical Cluster Graphs

Cluster graphs are a valuable concept to visualize structured relational information.
Hierarchical cluster graphs impose further levels of granularity which may be con-
trolled by the user. In this paper we present a force directed layout adjustment
algorithm for hierarchical cluster graphs. Clusters and cluster hierarchies respec-
tively, can be dynamically closed or opened which is vital to selectively reduce the
information presented by large graphs. In our case such an operation only rearranges
the graph locally, therefore preserving the mental map of the user. We also present
results achieved with our algorithm in the domain of semantic net exploration.
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A.1. Introduction
Force directed placement (FDP) algorithms evolved from a VLSI technique originally
described by Quinn and Breuer [19]. Eades [3] based his work on the afore mentioned
technique and adopted it for the drawing of undirected graphs. He modeled edges of
the graph as springs, but his force model does not reflect Hooke’s law, unlike Kamada
and Kawai [10] who solved a set of linear equations. Fruchterman and Reingold [7]
improved performance of computation by changing the force model. Since then many
different force models have been developed.

With increasing amount of data, graphs tend to become more cluttered and visually
incomprehensible. Clustered graphs are a way to bring more structure on top of the
classical graph model. Different algorithms for the drawing of clustergraphs have
been proposed since the clustered graph model was introduced by Eades et al. [4].
As mentioned by Brockenauer and Cornelsen [1] a simple method would be to add
dummy attractors for each cluster and connect every node of that cluster with the
attractor. Nodes of the same cluster will therefore be closer together. Huang and
Eades [9] introduced another approach which uses three different spring forces. For
an edge which connects two vertices belonging to different clusters another spring
force is used as for an edge which connects vertices of the same cluster. The third
spring force is used for edges between a virtual vertex (dummy attractor) and a
vertex. A similar approach was taken by Wang and Miyamoto [21], which used the
concept of a meta-graph instead of dummy vertices. Related to this problem, is the
issue of how to remove node overlapping for non-point vertices. This issue was first
addressed by Misue et al. [14]. Recently, Li et al. [12] introduced a FDP algorithm
which uses a dynamic natural length and preserves the mental map ([14]). It was
proven by Nagamochi and Kuroya [16] that transforming a layout with overlapping
nodes into a minimum area layout without node overlapping is NP-hard.

The problem of how nodes should be grouped into clusters also spawned widespread
research interest. A good overview of clustering algorithms can be found in [8].
In recent years clustering approaches with user involvement became popular. For
example, Nascimento and Eades [17] presented a method where users can give “hints"
that help the computer to find better solutions.

The algorithm presented in this paper is a layout adjustment algorithm, since it is
dependent on an already existing initial layout of the graph. This work is based on the
work of Wang and Miyamoto [21] and Li et al. [12] extending it to support subcluster
hierarchies. The remainder of this paper is structured as follows. Section A.2 reviews
in short the definitions which are used throughout this work. In Section A.3 our
algorithm is described in detail. Results obtained with our method are presented in
Section A.4. Before we conclude the paper in Section A.6 topics for future work are
presented in Section A.5. Section A.3.5 outlines in short our automatic clustering
algorithm.
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A.2. Definitions
A graph is a tuple G = (V,E) where V is a finite set of nodes and E is a finite set
of edges. An edge e = (v1, v2) v1, v2 ∈ V connects the two vertices v1 and v2.

Clustergraphs are an extension of graphs, which exhibit a hierarchical structure of
clusters, in which the nodes of the graph are organized. A clustered graph (or
clustergraph) is a graph with a partition (C1, ..., Ck) on the vertex set. Ci (i = 1...k)
are called cluster. A (k-way) partition of a set C is a family of subsets (C1, ..., Ck)
with ∪ki=1Ci = C and Ci ∩ Cj = 0 for i ∕= j [1]. A hierarchical clustergraph Gc is a
tuple Gc = (G,T ) where T is a rooted tree, whose leaves are exactly the nodes of G
(according to [4]) . A cluster Ci is a subcluster of a cluster Cj , if and only if Cj is
an ancestor of Ci in T .

For the following discussion we define a meta-graph as G = (V, ℰ) where V is a finite
set of meta-nodes and ℰ is a finite set of meta-edges. A meta-node �i consists of all
vertices of cluster Ci. Because we would like that clusters containing nodes connected
with each other should be close together – to keep edges in the final embedding short
– a meta-edge " = (�i, �j) connects the two meta-node �i and �j if there exists an
edge e = (vi, vj) i ∕= j with vi ∈ Ci and vj ∈ Cj . Each two meta-nodes �i and �j
i ∕= j are connected by at most one meta-edge.

A.3. Algorithm
First, the clustering of graph G has to be defined. This can be done either auto-
matically, semi-supervised or manually. For example the popular k-means clustering
algorithm [13] classifies n nodes into k clusters by assigning each node to the cluster
whose average value on a set of p variables is nearest to it by some distance measure
on that set. A semi-supervised variant of the k-means algorithm has been published
by Wagstaff et al. [20]. A brief survey of clustering methods can, for example, be
found in [18]. We used our clustering algorithm outlined in Section A.3.5.

Second, the graph G is layouted without considering cluster information. This can
be done by classical force directed layout algorithms ([7, 3, 2]) or of course with any
other graph drawing algorithm. This step yields an initial graph layout. From this
layout the metagraph G has to be derived (see Section A.3.1). Finally, the metagraph
is layouted with the algorithm described in Section A.3.2.

A.3.1. Deriving the metagraph

The meta-graph G is derived from Gc by creating a meta-node for each cluster. A
meta-node stores all nodes which belong to the cluster. Furthermore, the super-
ordinate meta-node and a list of subordinate meta-nodes is saved, yielding a tree
structure. For faster access during the layout process the “branching point" is also
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Figure A.1.: Two meta-nodes, whereas B is subordinate to A. Since B does not have any
subordinate meta-nodes the inner bounding box equals the outer. The small dots indicate
the centers of the boxes and the arrows the half width and height respectively.

Figure A.2.: A tree of a graph which consists of 9 meta-nodes, whereas B is branching
point for D, E and G. Node F is branching point for H and I and the root A is branching
point for B, C and F .

stored. In addition two bounding boxes are stored. In the reminder of this paper we
will refer to them as inner bounding box and outer bounding box.

The inner bounding box encloses only the nodes of the current meta-node. The
outer bounding box encloses the nodes of the meta-node itself and of all subordinate
meta-nodes. If a meta-node is a leaf then the outer bounding box equals the inner
bounding box. A bounding box is defined by its center and the half length in x and
y direction. Since each cluster is surrounded with a slightly inflated convex hull to
allow for better distinction, a fixed value is added to the half length to accommodate
that hull. The size of the outer bounding box can simply be determined by traversing
the tree. Figure A.1 shows the bounding boxes with their center and half lengths.

The “branching point" of a meta-node �i is the first node that has more than one
branch if you follow the tree up to the root, starting from �i. We will refer to the
branching point of a meta-node � as bp(�). Figure A.2 depicts this concept.

If Gc has nodes which do not belong to any cluster, either a meta-node for each
node or for a group of nodes is constructed. After G has been built each node has
to belong exactly to one meta-node. Edges between a pair of clusters are collapsed
into one meta-edge. It is worth mentioning that the meta-edges do not correspond
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Figure A.3.: A sample graph (left), its corresponding meta-graph (middle) and the respec-
tive hierarchy (right). Outer bounding boxes are shown in solid orange and inner bounding
boxes dashed. The red lines depict the meta-edges.

to the branches in the tree. Figure A.3 shows a sample graph, its corresponding
meta-graph and the tree structure defining the hierarchy of clusters (and meta-nodes
respectively).

A.3.2. Meta Layouter

The proposed algorithm follows the approach of Fruchterman and Reingold [7] in-
cluding their force model, although other force models could be used as well. The
spring forces are therefore computed with

fa =
d2

k

fr = −k
2

d
(A.1)

where fa and fr are the attractive and repulsive forces, respectively. As with classical
FDP algorithms repulsive forces are calculated between each pair of meta-nodes and
attractive forces only between meta-nodes which are connected by a meta-edge. d
is the current length and k is the so-called dynamic natural length (as Li et al. [12]
called it). The dynamic natural length between two meta-nodes �1 and �2 is

k =
l1
2

+
l2
2

(A.2)

where l1 is the diagonal of either the inner or outer bounding box of �1 and l2 is
the diagonal from binner or bouter of �2. The current length d between two meta-
nodes is simply the distance of the midpoints of the appropriate bounding boxes.
Which bounding box to consider depends on �1 and �2. Two different cases can be
distinguished:
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Figure A.4.: An example of a hierarchical clustergraph, showing the bounding boxes as
well as the underlying rooted tree.

bp(�1) and bp(�2) are unequal: In this case we construct a path (�1, ..., �c1, �c)
from �1 to the first node �c which has both metanodes, �1 and �2, in common.
Analogous we construct a path (�2, ..., �c2, �c) for �2. The outer bounding boxes for
�c2 and �c1 are then considered. As shown in Figure A.4 this would for example be
the case for meta-node D and F , where the outer bounding boxes of B and C have
to be taken.

bp(�1) equals bp(�2): This means that �1 and �2 are accommodated by the same
superordinate meta-node. First, it has to be checked if �1 and �2 are in different
subtrees or in the same subtree of bp(�1). In the former case the outer bounding box
of the subordinate meta-nodes of bp(�1) of the subtrees where �1 and �2 reside must
be taken. For instance, in Figure A.4 meta-nodes E and H share the same branching
point B but are in different subtrees, therefore the outer bounding boxes of D and
E have to be used. If they are in the same subtree it is sufficient to consider the
inner bounding box of �1 and �2.

After all nodes have been displaced at the end of an iteration, the bounding boxes
have to be recalculated. Since the outer bounding box of meta-nodes in higher
levels depend on the outer bounding box of the meta-nodes below, this can be done
recursively, starting from the leaves of the tree upwards. Note that the size of the
inner bounding box does not change, because the layout of the nodes of the meta-
node is not changed. Therefore only the position of the inner bounding box has to
be updated.

A.3.3. Break Condition

The calculation can safely be terminated if none of the bounding boxes intersect,
although the resulting layout could still be contracted. Determining if two axis
aligned bounding boxes (AABBs) A and B overlap is simple. We only have to check
if Aminx > Bmax

x or Bmin
x > Amaxx or Aminy > Bmax

y or Bmin
y > Amaxy (see for example

[15]) to determine if A and B are disjoint. The only problem which remains is
to determine which bounding boxes have to be checked for overlapping. Because
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sometimes it is valid that a bounding box is inside another one (for example binner
of E inside bouter of B in Figure A.4), in other cases it would be wrong (for instance
binner of F is not allowed to be inside bouter of B).

Each meta-node �i is checked against all metanodes �j , j = 1, .., i− 1. To find out if
the inner or outer bounding box has to be used the same cases as in Section A.3.2
are distinguished, except this time we additionally check if �1 is a subcluster of �2 or
vice versa. If these particular cases are not handled separately the break condition
would also break if the superordinate metanode is inside the outer bounding box of
the subordinate node. For instance in Figure A.3 the algorithm would also stop if
A is inside bouter of B. It should be noted that these additional cases can also be
considered in the meta layouter with the downside of getting slightly larger graph
embeddings.

A.3.4. Closing and Opening of Clusters

Clusters can be closed or opened dynamically. This allows the user to hide certain
parts of a large graph in which he is not currently interested. If a cluster Ci gets
closed, the size of the bounding box and the boundary are scaled down by a cer-
tain factor f in regard to the center of the outer bounding box and is marked as
closed. All subclusters of Ci are marked as hidden and their bounding boxes remain
unchanged. Hidden subclusters are completely suppressed, neither their outline nor
their corresponding nodes and edges containing these nodes are shown. For a closed
cluster only its content is invisible.

Since we can be sure that the layout is non-overlapping (meta-nodes corresponding to
hidden clusters are excluded) only the attractive part of the meta spring embedder is
executed to contract the layout. This keeps changes local, preserving the mental map
([14]). If due to this process a closed cluster is moved, all of its hidden subclusters
are moved accordingly (this guarantees that if a closed cluster is opened again all of
its subclusters are contained in its outer bounding box).

If a cluster gets opened, its bounding box is scaled by the factor 1/f and is marked
visible as well as its subclusters. However, the situation can also be handled differ-
ently. For instance, subclusters may only get tagged visible until a closed cluster is
encountered. This allows successive reopening of closed clusters. This time both the
attractive part and the repulsive part are executed (since there can be overlapping
bounding boxes once a cluster is opened). Figure A.5 illustrates this concept where a
cluster is closed, moved during the layout process and opened again (see also Figure
A.7).
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Figure A.5.: Left: An initial layout of a graph with four clusters A, B, C and D. Middle:
Cluster C is closed by 50%, therefore both bounding boxes of C are scaled in regard to the
center of its outer bounding box. The bounding boxes of the subcluster D remain unaltered.
D and its contents as well as the nodes of C are just hidden (depicted grey in the figure).
The force directed placement algorithm displaces C by the vector v, therefore the same
displacement is carried out on D. Right: C at its final position after the FDP algorithm has
finished. When C gets openend the bounding boxes are rescaled to the original size. The
subcluster’s bounding boxes are automatically at the right position. However, the inflated
bounding box may overlap other (C overlaps binner of B).

A.3.5. Automatic Clustering

We implemented an algorithm for automatic detection of clusters in a directed graph
which showed to be useful in regard to semantic nets. In our case each cluster Ci
has a unique node designated as cluster center nic.

In a first step, this cluster centers are identified by finding nodes which fulfill the
condition o(n)− i(n) > t where t is a user-defined threshold and i(n) is the in-degree
of a node n, defined as the number of directed edges pointing to n, mathematically

i(n) = ∣{m∣(m,n) ∈ E}∣ (A.3)

Similarly, the out-degree o(n) is defined as

o(n) = ∣{m∣(n,m) ∈ E}∣ (A.4)

Furthermore, nodes which lie within a graph-theoretical distance1 d – also a user
specified value – from a cluster center nic are assigned to the node set N i

C of the
corresponding cluster Ci. Note that for the time being a node can belong to different
clusters.

Second, if a cluster center nic is part of the set of nodes of a cluster Ck, the cluster
Ci may be a subcluster of Ck and is therefore marked as possible candidate. We will
refer to the possible subcluster candidates of a cluster Ci as pc(Ci). The union set

1the length of the shortest path between two vertices in a graph
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N i
C ∪Nk

C is removed from Nk
C to ensure that those nodes only belong to exactly one

cluster.

Next, the subcluster hierarchy is built from the possible candidates determined in
Step 2. For example, in Figure A.3 cluster C is a possible candidate for a subcluster
of A as well as B. However, only one predecessor is allowed for C. To determine the
correct predecessor of a cluster Ci we have to find a cluster Ck where Ci ∈ pc(Ck)
but ∄C1 ∈ pc(Ck), C1 ∕= Ci with Ci ∈ pc(C1) and ∄C2 ∈ pc(C1), C2 ∕= Ci with
Ci ∈ pc(C2) and so on. For the given example C must be a subcluster of B because
pc(A) = {B,C} contains the cluster B which also has C as possible candidate.

Finally, nodes n are resolved which still belong to more than one cluster

Cs = {C1, C2, ..., Cn} (A.5)

In such a case we base our decision on the number of edges

d(n,Ci) = ∣{m∣(n,m) ∈ E ∨ (m,n) ∈ E,m ∈ Ci}∣ with Ci ∈ Cs (A.6)

which connect such a node n with other nodes of the clusters in question Cs. If n
has the same number of connections with nodes of different clusters, mathematically
d(n,Ci) = k ∀i = 1, .., n we remove the node from all clusters in Cs and assign it
to a possibly existing superordinate cluster. Otherwise a cluster Ci ∈ Cs must exist,
for which d(n,Ci) is maximal. In this case n is assigned to Ci and removed from all
clusters in the set Cs ∖ Ci.

A.4. Applications
The presented method was written in C++ and is successfully used in the Melvil®
Knowledge Exploration Software by uma information technology GmbH. Melvil is a
tool for the creation of semantic networks in terms of directed graphs, concepts and
clusters. The visualization of such knowledge networks (or semantic networks) for
knowledge exploration highly depends on methods to display the elements such as
nodes, clusters and relations in a clear manner. The arrangement of these clusters
is implemented via the aforementioned techniques. Exploration of networks is also
supported in Melvil, via search queries, individualized visualization of clusters and
by hiding certain parts of the graph (e.g. closing of clusters).

However, since the presented technique is a layout adjustment method, the quality
of a final embedding depends on the initial layout. Figure A.6 through Figure A.8
show results achieved with the proposed algorithm. Although the repulsive part
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Figure A.6.: A graph representing various countries of Europe and Middle East. An em-
bedding of the graph without clustering is shown on the left. Annotating this graph with
clustering information for certain regions (Western Europe, Eastern Europe, ...) leads to
a visually more comprehensible representation (right). The cluster centers were detected
automatically.

Figure A.7.: The initial layout of the graph is shown on the left. The clusters Western
Europe and Eastern Europe are closed (middle). Their boundary are shrunken to 20%
of their original size and their contents are hidden. If the clusters are reopend again the
inflated clusters are arranged properly (right).

of the algorithm has runtime of O(∣C∣2), the algorithm performed well in practice,
because usually ∣C∣ ≪ ∣V ∣.

A.5. Future Work
The main problem is the break condition of the algorithm. In some cases it aborts
the calculation too early, yielding a layout with long distances between meta-nodes.
We currently experiment with separating the repulsive and attractive forces. That
means, in a first step only repulsive forces are working until a layout with non-
overlapping meta-nodes is reached. Second, the meta-nodes are contracted by step-
wise reducing the edge length by a certain amount as long as no overlapping occurs.

Another problem lies in the calculation of the dynamic natural length, which restricts
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(a) A graph showing the interconnec-
tions between various music artists.

(b) Close-up view of a graph describing the life and work
of Wolfgang Amadeus Mozart.

Figure A.8.: Two example graphs showing results achieved with our algorithm.

the closeness of two meta-nodes. In many cases this distance is too far. A solution
could be to determine the length more precisely by measuring the distance from the
midpoint to the AABB. K-dops [11] would approximate the convex hull of the node
set more precisely than AABBs leading to a better estimation of the natural length.
The overlap test between two k-dops is a general version of the AABB2 collision check
(see Section A.3.3). In the overlapping case maximal k/2 interval tests are necessary.
Furthermore the optimal bounding volume for a cluster in the hierarchy can be easily
computed by merging the bounding volumes of the subordinate clusters. Therefore
a more compact layout with negligible computational overhead would be possible.

As shown by Frishman and Tal [5] the high computational power of GPUs can be
harnessed to accelerate force directed layout algorithms. We are planning to make a
GPU implementation of the presented meta layouter based on the work of Frishman
and Tal [5, 6] which also performs the collision detection on graphics hardware.

By now, only the force model by Fruchterman and Reingold [7] has been used. It
would be of interest to compare the results with results reached with other force
models, for example the one proposed by Eades et al. [4] or Creek [2].

A.6. Conclusions
We have presented a force-directed layout adjustment algorithm for the drawing of
hierarchies of clusters. Cluster hierarchies allow the user to adopt the granularity
of the graph to their specific needs. Users can therefore suppress parts of the graph
which are currently not of concern. Calculating an overlapping free layout with FDP

2In fact, an AABB in two dimensions is a special case of a k-dop with k = 4
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requires some attention when determining the ideal length of edges. Two bounding
boxes ensure that a cluster is not placed inside the boundary of another cluster nor
in a cluster hierarchy where it does not belong. Before the layout adjustment can
start, a meta graph is derived based on the initial layout and clustering information.
The main motivation for this work is from the domain of semantic net exploration
and knowledge space visualisation. Examples from these fields were shown.

A.7. Acknowledgments
The context and idea of this work has its origins in a research project by uma
information technology GmbH. The author would like to thank uma information
technology GmbH for providing the image for Figure A.8(b) and the graphs used in
Figure A.6, A.7 and A.8(a).

A.8. Bibliography
[1] Brockenauer, R., Cornelsen, S.: Drawing clusters and hierarchies. In: M. Kaufmann,

D. Wagner (eds.) Drawing Graphs: Methods and Models, 2025, pp. 193–227. Springer-
Verlag, Berlin, Germany (2001)

[2] Creek, A.: Forces of nature (2001). Available online: http://www.cosc.canterbury.
ac.nz/research/reports/HonsReps/2001/hons_0102.pdf

[3] Eades, P.: A heuristic for graph drawing. Congressus Nutnerantiunt 42, 149–160 (1984)

[4] Eades, P., Feng, Q.W., Lin, X.: Straight-line drawing algorithms for hierarchical graphs
and clustered graphs. Proceedings of the Symposium on Graph Drawing pp. 113–128
(1996)

[5] Frishman, Y., Tal, A.: Dynamic drawing of clustered graphs. EuroVis pp. 75–82 (2007)

[6] Frishman, Y., Tal, A.: Multi-level graph layout on the gpu. Proceedings Information
Visualization (2007)

[7] Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Software - Practice and Experience 21, 1129–1164 (1991). Available on-
line: http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol21/
issue11/spe060tf.pdf

[8] Fung, G.: A comprehensive overview of basic clustering algorithms (2001). Available
online: www.cs.wisc.edu/~gfung/clustering.pdf

[9] Huang, M.L., Eades, P.: A fully interactive system for clustering and navigating large
graphs. Graph Drawing, Springer Lecture Notes in Computer Science pp. 374–383
(1998)



A. Bibliography 81

[10] Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Informa-
tion Processing Letters 31, 7–15 (1989)

[11] Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans-
actions on Visualization and Computer Graphics 4(1), 21–36 (1998). Cite-
seer.ist.psu.edu/klosowski96efficient.html

[12] Li, W., Eades, P., Nikolov, N.: Using spring algorithms to remove node overlapping
(2006). Available online: http://crpit.com/confpapers/CRPITV45Li.pdf

[13] Macqueen, J.B.: Some methods of classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathemtical Statistics and
Probability, pp. 281–297 (1967)

[14] Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map.
Journal of Visual Language and Computing 6 (1995)

[15] Möller, T., Haines, E.: Real-Time Rendering, first edn. A K Peters (1999)

[16] Nagamochi, H., Kuroya, K.: Convex drawing for c-planar biconnected clustered graphs.
In: G. Liotta (ed.) Graph Drawing, Perugia, 2003, pp. pp. 369–380. Springer (2004)

[17] do Nascimento, H.A.D., Eades, P.: A system for graph clustering based on user hints.
Selected papers from the Pan-Sydney workshop on Visualisation 2, 73–74 (2000). Avail-
able online: http://crpit.com/confpapers/CRPITV2Nascimento.pdf

[18] Nizar, G., Michel, C., Nozha, B.: Unsupervised and semi-supervised clustering: a brief
survey (2005). Citeseer.ist.psu.edu/727015.html

[19] Quinn, N., Breuer, M.: A force directed component placement procedure for printed
circuit boards. IEEE Transactions on Circuits and Systems pp. 377–388 (1979)

[20] Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with
background knowledge. In: ICML ’01: Proceedings of the Eighteenth International
Conference on Machine Learning, pp. 577–584. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2001)

[21] Wang, X., Miyamoto, I.: Generating customized layouts. Proceedings of the Symposium
on Graph Drawing (GD 1995) pp. 504–515 (1995)




